

think • innovate • transform

Criterion 1 – Curricular Aspects

Key Indicator	1.1	Curriculum Design and Development
Metric	1.1.3	Average percentage of courses having focus on employability/
		entrepreneurship/ skill development offered by Chemistry

DEPARTMENT OF CHEMISTRY

SYLLABUS COPY OF THE COURSES HIGHLIGHTING THE FOCUS ON EMPLOYABILITY/ ENTREPRENEURSHIP/ SKILL DEVELOPMENT

1. List of courses for the programmes in order of

S. No.	Programme Name
i.	Master of Science (Chemistry)
ii.	Bachelor of Science (Chemistry)

2. Syllabus of the courses as per the list.

Legend :	Words highlighted with Blue Color	-	Entrepreneurship
	Words highlighted with Red Color	-	Employability
	Words highlighted with Purple Color	-	Skill Development

1. List of Courses

Name of the Course	Course Code	Name of the Programme	Activities with direct bearing on Employability/ Entrepreneurship/ Skill development	Year of introduction
MSc Chemistry		1	1	1
Organic Chemistry I	YCY101	MSc	Employability- Tutorials and Assignments	2018-19
Inorganic Chemistry I	YCY102	MSc	Employability- Tutorials and Assignments	2018-19
Physical Chemistry I	YCY103	MSc	Employability- Tutorials and Assignments	2018-19
Inorganic Chemistry II	YCY201	MSc	Employability- Tutorials and Assignments	2018-19
Physical Chemistry II	YCY202	MSc	Employability- Tutorials and Assignments	2018-19
Organic Chemistry II	YCY301	MSc	Employability- Tutorials and Assignments	2018-19
Pharmaceutical Chemistry	YCY304A	MSc	Employability- Tutorials and Assignments	2018-19
Analytical Chemistry	YCY305	MSc	Employability- Tutorials and Assignments	2018-19
Industrial Chemistry	YCY403B	MSc	Employability- Tutorials and Assignments	2018-19
Chemistry of Nanoscience and Nanotechnology	YCY404B ZQCY401	MSc	Employability- Tutorials and Assignments	2018-19
Organic Chemistry II	YCY301	MSc	Employability- Tutorials and Assignments	2019-20
Physical Methods in Chemistry-I	YCY302	MSc	Employability- Tutorials and Assignments	2019-20
Organic Chemistry Practical -I	YCY303	MSc	Employability- Tutorials and	2019-20

			Assignments	
(A)Pharmaceutical Chemistry/ (B)Electro-Organic	YEC304A/ YEC304B	MSc	Entrepreneurship- Case study	2019-20
Chemistry	YEC305	MSc	Employability- Tutorials and	2019-20
Analytical Chemistry Physical Methods in Chemistry-II	YCY401	MSc	Assignments Employability- Tutorials and Assignments	2019-20
Organic Chemistry Practical -II	YCY402	MSc	Employability- Tutorials and Assignments	2019-20
(A)GreenChemistry/ (B)IndustrialChemistry	YEC403A/ YEC403B	MSc	Employability- Tutorials and Assignments	2019-20
(A)Selected topics inChemistry/ (B)Chemistry of nanoscience andnanotech.	YEC404A/ YEC404B	MSc	Employability- Tutorials and Assignments	2019-20
Dissertation –Project work	YCY405	MSc	Employability- Tutorials and Assignments	2019-20
BSc Chemistry			8	
Study Skills	XCY101	BSc	Skill Developement- Group discussion	2017-18
Fundamental Concepts of Chemistry	XCY104	BSc	Employability- Tutorials and Assignments	2017-18
Inorganic Chemistry I	XCY105	BSc	Employability- Tutorials and Assignments	2017-18
Human Ethics, Values, Rights and Gender Equality	XUM106	BSc	Skill Development - Group discussion	2017-18
Volumetric Analysis Practical -I	XCY107	BSc	Employability- Tutorials and Assignments	2017-18
Speech and Business Communication	XCY202	BSc	Skill Development - Group discussion	2017-18
Organic Chemistry I	XCY204	BSc	Employability- Tutorials and Assignments	2017-18

-

Chemistry/	XCY503B		Tutorials and	
Agricultural Chemistry			Assignments	
Computer		BSc	Employability-	2019-20
Applications in			Tutorials and	
Chemistry/	XCY504A/		Assignments	
Programming in C	XCY504B			
		BSc	Employability-	2019-20
Organic Qualitative			Tutorials and	
Analysis PracticalVA	XCY505		Assignments	
		BSc	Employability-	2019-20
Physical Chemistry			Tutorials and	
Practical VB	XCY506		Assignments	
		BSc	Employability-	2019-20
			Tutorials and	
Renewable Energy	XCY601		Assignments	
Industrial Chemistry/	XCY602A/	BSc	Entrepreneurship-	2019-20
Material Chemistry	XCY602B		Case study	
		BSc	Employability-	2019-20
Food Chemistry/	XCY603A/		Tutorials and	
Polymer Chemistry	XCY603B		Assignments	
		BSc	Employability-	2019-20
Organic Qualitative			Tutorials and	
Analysis PracticalVI	XCY604		Assignments	
		BSc	Employability-	2019-20
Physical Chemistry			Tutorials and	
Practical VIA	XCY605		Assignments	
		BSc	Employability-	2019-20
			Tutorials and	
Project	XCY606		Assignments	

2. Syllabus of the courses:

B.Sc Chemistry

COUR	RSE CODE	XCY104		L	Т	Р	SS	С
COUR	RSE NAME	FUNDAMENTAL CONCEPTS OF CH	IEMISTRY	3	1	0	0	4
C: P:	A	3.2:0:0.8		L	Т	Р	SS	Η
				3	1	0	0	4
COUF	RSE OUTCON	MES:	Domain	l			Level	
CO1	<i>Explain</i> the p quantum mee	rinciple of atomic structure and basics of hanism	Cognitive		Und	erstar	ıd	
CO2	Describe the	periodic properties of various elements	Cognitive		Rem	embe	r	
CO3	Interpret IUP	AC nomenclature of compounds.	Cognitive Affective		App Rece	ly eiving		
CO4	Describe the	physical properties of dipole moment,	Cognitive		Rem	embe	r	
		and magnetic properties.	Affective		Resp	ondii	ng	
CO5	Apply and Ide	entify the various analytical methods for	Cognitive		Rem	embe	r	
	quantitative a				App	ly		
UNIT	- IATOMIC S	STRUCTURE AND BASIC QUANTUM	MECHANIC	S				
							1	0+3
quantu	m mechanics maximum spi	Einstein photoelectric equation – Compto – The Schrodinger wave equation-Quantu n multiplicity – Pauli's exclusion principle	ım numbers. A	Aufba	u prin	ciple	– Hu	ind's
UNIT	- II PERIOD	IC TABLE						6+3
Moder	n periodic la	w – modern periodic table – classifica	ation of elem	nents	based	on	electr	onic
config	uration. Funda	mental properties like atomic size, valency	, ionization en	lergy,	ionic	radiu	s, elec	tron
affinity	y, electronegat	tivity, metallic and nonmetallic character	- variation	of the	e abov	ve fu	ndame	ental
		ion for the periodic variation of the fundam		es – di	agona	l rela		
		MENTALS OF ORGANIC CHEMISTR						9+3
		e of organic compounds Molecular weight						
		d platonic chloride methods. Calculation o	-					-
-	• •	ion of elements and molecular weight. Fu		-		•		
	•	on of carbon-carbon bonds - Reaction inter					•	
		ions and carbanions – nucleophilic and el	-	-	• •			
		n, elimination, rearrangement and polymer ic effect: explanation with suitable example		uitadi	e exal	inples	.mau	Juve
enect		ie erreet. explanation with suitable example	-0.					
								ľ

UNIT -IV PHYSICAL PROPERTIES AND CHEMICAL CONSTITUTIONS.

Dipole moment: Definition – Experimental determination - Calculation of percentage of ionic character of HF and HCl –Dipole moment and molecular structure: CO2, H₂O,NH3 and CH4.

Polarizability: Definition – polarization of a molecule – molar polarization – Clausius-Mosotti equation. Magnetic properties: Paramagnetic, diamagnetic and ferromagnetic substances and their characteristics – magnetic permeability – magnetic susceptibility – specific and molar magnetic susceptibilities – determination of magnetic susceptibility by Gouy's method.

UNIT -V ANALYTICAL METHODS

10+3 Qualitative Inorganic Analysis – Dry Test, flame test, cobalt nitrate test–wet confirmatory test for acid radicals, interfering acid radicals – elimination of interfering acid radicals. Solubility product, common ion effect, complexation, oxidation reduction reactions involved in identification of anions and cations – separation of cations into groups – Volumetric analysis – preparation of standard solutions –normality, molarity and molality by titrimetric reactions – acid base, redox, precipitation and complex metric titrations –indicators – effect of change in pH – selection of

suitable indicators.

LECTURE	TUTORIALS	PRACTICALS	SELF STUDY	TOTAL
45	15	0	0	60

TEXT BOOKS

1. Puri B.R., Sharma L.R., Kalia K.K., Principles of Inorganic Chemistry, (23rd edition), New Delhi, Shoban Lal Nagin Chand & Co., (1993).

2. Lee J.D., Concise Inorganic Chemistry, UK, Black well science (2006).

3. Puri B.R., Sharma L.R., Pathania M.S., Principles of Physical Chemistry, (23rdedition), New Delhi, Shoban Lal Nagin Chand & Co., (1993).

4. Glasstone S., Lewis D., Elements of Physical Chemistry, London, Mac Millan & Co.Ltd. **REFERENCES**

KEFERENCES

1. Morrison R.T. and Boyd R.N., Organic Chemistry (6th edition), New York, Allyn

& Bacon Ltd., (1976).

2. Bahl B.S. and Arun Bahl, Advanced Organic Chemistry, (12th edition), New Delhi, Sultan Chand & Co., (1997).

3. Frank J. Welcher and Richard B. Hahn, Semi micro Qualitative Analysis, New Delhi, Affiliated East-west Press Pvt. Ltd. (1969).

4. G.D. Tuli, R.D. Madan, S.K. Basu, Satya Prakash, Advanced Inorganic Chemistry, Volume 1, (5th edition), New Delhi, S. Chand & Company Ltd, (2014

E RESOURCES

1. http://www.mooc-list.com/course/chemistry-minor-saylororg

2. https://www.canvas.net/courses/exploring-chemistry

3. http://freevideolectures.com/Course/3001/Chemistry-I

4. http://freevideolectures.com/Course/3167/Chemistry-II

10+3

COUR	RSE CODE	XCY105	L	Т	Р	SS	С
COUR	RSE NAME	INORGANIC CHEMISTRY I	3	1	0	0	4
C: P: <i>A</i>	A	2.8:0.4:0.8	L	Т	Р	SS	Η
			3	1	0	0	4
COUR	RSE OUTCON	IES:	Doma	in	Level		
CO1		<i>xplain</i> the basic concepts of ionic bonding; Display simple inorganic molecules usingVSEPR theory	Cognitive Psychom			embe erstan	
	the shapes of	simple morganic molecules using VSEFK meory	rsycholi	0101	Set		
CO2		nd <i>Report</i> extraction, properties and uses	Cognitive			erstan	
	of I A and IIA	group s-block elements.	Affective	2	Resp	ondir	ıg
CO3	<i>Explain</i> the e	xtraction and purification process of			Understand		
	various metal	s and Interpret their physical and	Cognitive Affective	Apply			
	chemical prop	perties.	7 meeuve	,	Responding		ıg
CO4	Describe the	concept of acids and bases and the	Cognitive	e	Analysis		
	application of	various concepts.	Psychom	otor		eptior	1
CO5	<i>Identify</i> the v	arious radioactive process and their	Cognitive	e	Rem	embe	r
	consequences		Č				
UNIT	- ICHEMICA	L BONDING					
						1	0+3
		Energy – Born – Haber Cycle – Pauling and Muliken Polarisability – partial ionic character from electro r			tro ne	gativi	ty –

Polarizing power and Polarisability – partial ionic character from electro negativity – Transitions from ionic to covalent character and vice versa – Fajan's rule. VSEPR Theory – Shapes of simple inorganic molecules (BeCl₂, SiCl₄, PCl₅, SF₆,IF₇, NH₃, XeF₆, BF₃,H₂O) - VB Theory – Principles of hybridization – BeCl₂ – MO Theory – Bonding and antibonding orbitals – Application of MO Theory to H₂,He₂,N₂,O₂,HF and CO – Comparison of VB and MO theories.

> 6+ 3

9+ 3

UNIT - II CHEMISTRY OF S-BLOCK ELEMENTS

Position of Hydrogen in the Periodic Table, atomic hydrogen, nascent hydrogen, occluded hydrogen and uses of hydrogen. General characteristics of s-block elements – General characteristics of Group IA – diagonal relationship between Li and Mg – Physical and Chemical properties – Uses – Preparation of NaOH, Na₂CO₃, NaHCO₃ (Laboratory and Industrial methods) – Properties – Uses. General characteristics of Elements of Group II A – diagonal relationship between Be and Al —Physical and Chemical properties – Uses – Preparation and uses of Mg: MgCO₃, MgSO₄.

UNIT – III BASIC PRINCIPLES OF METALLURGY

Ores and minerals – concentrating the ore by gravity separation, froth flotation and magnetic separation – Types of furnaces -Roasting– Calcination – Smelting – Flux – Purification by electrolytic refining, zone refining and Van-Arkel vapour phase refining with suitable examples– Alumino thermic process. Group–IA: Extraction of lithium and its uses - Diagonal relationship of Lithium with Magnesium Group–IIA: Extraction of Beryllium and its uses –Diagonal relationship

of Beryllium with Aluminium Group–IB: Extraction of copper and its uses – Extraction of silver and its uses. Group-VA: Nitrogen: Ammonia – manufacture, properties, uses and structure. Nitric Acid: Manufacture of Nitric acid – Action of nitric acid on metals

UNIT -IV ACIDS AND BASES

Lewis concept - Classification of Lewis acids - Lux-Flood concept - Hard-Soft acid base concept and

10+3

10+ 3

its applications. Non- aqueous solvents- Classification of solvents- Neutralization reaction and

solvolysis in liquid ammonia- Metal- ammonia solutions. Neutralisation, solvolysis and redox

reactions.

UNIT –V NUCLEAR CHEMISTRY

Constitution of nuclei – stability of nuclei and (n-p) ratio – magic number– mass defect and binding energy – mass – energy relationship. Radioactivity: Natural radioactivity — Soddy's group displacement law – Radioactivity equilibrium – Rate of radioactive disintegration – half -life period and average life period– radioactive disintegration series. Nuclear fission: Theory – applications – principle of atom bomb. Nuclear fusion: Theory – Solar and Stellar energy – principle of hydrogen bomb Applications of radioactivity: medicine – agriculture – industry – structural elucidations– carbon dating– cyclotron.

LECTURE	TUTORIALS	PRACTICALS	SELFSTUDY	TOTAL
45	15	0	0	60

TEXT BOOKS

1. Lee J.D., Concise Inorganic Chemistry, UK, Black well science (2006).

2. Bahl B.S. and Arun Bahl, Advanced Organic Chemistry, (12th edition), New Delhi, Sultan Chand & Co., (2007).

REFERENCES

1. Puri B.R., Sharma L.R., Kalia K.K., Principles of Inorganic Chemistry, (23rd edition), New Delhi, Shoban Lal

Nagin Chand & Co., (2003).

2. Puri B.R., Sharma L.R., Pathania M.S., Principles of Physical Chemistry, (23rd edition), New Delhi, Shoban Lal

Nagin Chand & Co., (2005).

3. Glasstone S., Lewis D., Elements of Physical Chemistry, London, Mac Millan & Co. Ltd.

4. Morrison R.T. and Boyd R.N., Organic Chemistry (6th edition), New York, Allyn & Bacon Ltd., (2003).

COU	RSE CODE	XCY204	L	Т	Р	SS	С
COU	RSE NAME	ORGANIC CHEMISTRY I	3	1	0	0	4
C:P:A	4	2.8:0.4:0.8	L	Т	Р	SS	Η
			3	1	0	0	4
COU	RSE OUTCO	MES	_	DOM	IAIN	LEVEL	
CO1		properties and application	ns of	Cogn		Understar	nd
001		es and their derivatives.		0081		01100150	
CO2		e preparation with mechanism, proper	rties	Cogn	itive	Remembe	er
		ons of alkocols, ethers and their derivation		- 0			
		roxy and alkoxy groups.					
CO3		preparation with mechanism, properti	es and	Cogn	itive	Apply Re	ceiving
		ons of aldehydes, ketones & carboxy		Affec		rr 5	8
	and their deriv						
CO4		concepts of covalent bonding and exp	plain	Cogn	itive	Remembe	er Responding
		of hybridization.		U			1 0
CO5	Apply and Ide	entify the various stereo chemical con	cepts.	Cogn	itive	Apply	
			-	U		Remembe	er
UNIT	I - COVALE	NT BONDING ANDSTRUCTURE				9+3	
Coval	lentbonding-Co	onceptofhybridization–Structure of	organi	c mol	ecules	based or	n sp ³ , sp ² ands
	0					oubea of	
hvbrid	dization-Coval	1 0	c mole	ecules:b			
		ent bond properties of organi			ondlen	gth,bondan	gle,bondenergy
bondp	olarity,dipolen	ent bond properties of organi noment, inductive, mesomeric, electron	neric,reso	onancea	ondlen Indhyp	gth,bondan erconjugativ	gle,bondenergy veeffects.
bondp UNIT	oolarity,dipolen [] II - ALIPHA	ent bond properties of organi noment, inductive, mesomeric, electrom TIC HYDROCARBONS AND ALL	neric,reso KYL HA	onancea	ondlen indhyp S	gth,bondang erconjugativ 9+3	gle,bondenergy veeffects.
bondp UNIT Alken	polarity,dipolen II - ALIPHA nes: Ozonolysis	ent bond properties of organi noment,inductive,mesomeric,electrom TIC HYDROCARBONS AND ALL , Hydroboration and polymerization	neric,reso KYL HA with su	onancea ALIDES itable e	ondlen andhyp S xample	gth,bondan erconjugativ 9+3 es. Dienes:	gle,bondenergy veeffects. Classification -
bondp UNIT Alken prepar	polarity,dipolen II - ALIPHA nes: Ozonolysis ration, properti	ent bond properties of organi noment,inductive,mesomeric,electrom TIC HYDROCARBONS AND ALL , Hydroboration and polymerization es and uses of Butadiene Alkynes:	heric,reso KYL HA with su Acidity	onancea LIDES itable e y of all	ondlen indhyp S xample cynesA	gth,bondan erconjugativ 9+3 es. Dienes: lkyl halides	gle,bondenergy veeffects. Classification - s: S _N 1 and S _N 2
bondp UNIT Alken prepar Mech	bolarity,dipolen <u>II - ALIPHA</u> hes: Ozonolysis ration, properti anism – E ₁ and	ent bond properties of organi noment, inductive, mesomeric, electrom TIC HYDROCARBONS AND ALL , Hydroboration and polymerization es and uses of Butadiene Alkynes: d E_2 Mechanism – Hofmann and Sa	heric,reso KYL HA with su Acidity hytzeff's	onancea LIDES itable e y of all rule. P	ondlen andhyp S xample cynesA oly ha	gth,bondan, erconjugativ 9+3 es. Dienes: lkyl halides logen deriv	gle, bondenergy veeffects. Classification - S: S _N 1 and S _N 2 atives: Haloger
bondp UNIT Alken prepar Mecha deriva	Dolarity, dipolen II - ALIPHA nes: Ozonolysis ration, properti anism – E ₁ and atives of unsatu	ent bond properties of organi noment, inductive, mesomeric, electrom TIC HYDROCARBONS AND ALL , Hydroboration and polymerization es and uses of Butadiene Alkynes: d E_2 Mechanism – Hofmann and Sa rated hydrocarbons: Preparation and b	heric,reso KYL HA with su Acidity hytzeff's	onancea LIDES itable e y of all rule. P	ondlen indhyp S xample cynesA	gth,bondan, erconjugativ 9+3 es. Dienes: lkyl halides logen deriv	gle,bondenergy veeffects. Classification - s: S _N 1 and S _N 2
bondp UNIT Alken prepar Mecha deriva allyl i	Dolarity, dipolen II - ALIPHA nes: Ozonolysis ration, properti anism – E ₁ and atives of unsatu odide. Syntheti	ent bond properties of organi noment, inductive, mesomeric, electrom TIC HYDROCARBONS AND ALL , Hydroboration and polymerization es and uses of Butadiene Alkynes: d E_2 Mechanism – Hofmann and Sa	with sur Acidity Average of v	onancea ALIDES itable e y of all rule. P inyl	ondlen indhyp S xample cynesA oly ha chlori	gth,bondan erconjugativ 9+3 es. Dienes: lkyl halides logen deriv de, all	gle, bondenergy veeffects. Classification - s: S _N 1 and S _N 2 atives: Halogen yl chloride and
bondp UNIT Alken prepar Mecha deriva allyl i UNIT	Dolarity, dipolen TI - ALIPHA hes: Ozonolysis ration, properti anism – E ₁ and atives of unsatu odide. Syntheti TIII - CHEMI	ent bond properties of organi noment,inductive,mesomeric,electrom TIC HYDROCARBONS AND ALL , Hydroboration and polymerization es and uses of Butadiene Alkynes: d E ₂ Mechanism – Hofmann and Sa rated hydrocarbons: Preparation and us c applications of Grignard reagents. STRYOFCYCLOALKANES AND	Meric, reso KYL HA with su Acidity mytzeff's uses of v STREC	LIDES LIDES itable e y of all rule. P inyl	ondlen undhyp S xample cynesA oly ha chlori IERIS	gth,bondan; erconjugativ 9+3 es. Dienes: lkyl halides logen deriv de, all M 10+	gle, bondenergy veeffects. Classification - s: S _N 1 and S _N 2 atives: Haloger lyl chloride and -3
bondp UNIT Alken prepar Mech deriva allyl i UNIT Alicyo	bolarity, dipolen TII - ALIPHA hes: Ozonolysis ration, properti anism $- E_1$ and atives of unsatu odide. Syntheti TIII - CHEMI clic compound	ent bond properties of organi noment, inductive, mesomeric, electrom TIC HYDROCARBONS AND ALL , Hydroboration and polymerization es and uses of Butadiene Alkynes: d E ₂ Mechanism – Hofmann and Sa rated hydrocarbons: Preparation and c applications of Grignard reagents. STRYOFCYCLOALKANES AND s – general methods of preparation	with sur Acidity aytzeff's uses of v STREC	itable e y of all rule. P inyl	ondlen andhyp S xample cynesA oly ha chlori IERIS 5 – Bae	gth,bondan erconjugativ 9+3 es. Dienes: lkyl halides logen deriv de, all M 10+ eyer's strair	gle, bondenergy veeffects. Classification - S: S_N1 and S_N2 atives: Halogen lyl chloride and -3 n theory and it
bondr UNII Alken prepar Mech deriva allyl i UNII Alicyo modif	Dolarity, dipolen TII - ALIPHA res: Ozonolysis ration, properti anism – E ₁ and atives of unsatu odide. Syntheti TIII - CHEMI clic compound fications. Confe	ent bond properties of organi noment,inductive,mesomeric,electrom TIC HYDROCARBONS AND ALI , Hydroboration and polymerization es and uses of Butadiene Alkynes: d E ₂ Mechanism – Hofmann and Sa rated hydrocarbons: Preparation and u c applications of Grignard reagents. STRYOFCYCLOALKANES AND s – general methods of preparation prmational analysis: differences betwee	with sur Acidity aytzeff's uses of v STREC of cyclo	LIDES itable e y of all rule. P inyl D ISOM alkanes	ondlen andhyp S xample cynesA oly ha chlori IERIS s – Bae n and c	gth,bondan; erconjugativ 9+3 es. Dienes: lkyl halides logen deriv de, all M 10+ eyer's strair conformatio	gle, bondenergy veeffects. Classification - S: S _N 1 and S _N 2 atives: Haloger lyl chloride and -3 n theory and it n Fischer
bondr UNII Alken prepar Mech deriva allyl i UNII Alicyo modif and S	Dolarity, dipolen <u>C</u> II - ALIPHA hes: Ozonolysis ration, properti anism – E ₁ and atives of unsatu odide. Syntheti <u>C</u> III - CHEMI clic compound fications. Confe Sawhorse and N	ent bond properties of organi noment, inductive, mesomeric, electrom TIC HYDROCARBONS AND ALL , Hydroboration and polymerization es and uses of Butadiene Alkynes: d E ₂ Mechanism – Hofmann and Sa rated hydrocarbons: Preparation and c applications of Grignard reagents. STRYOFCYCLOALKANES AND s – general methods of preparation	Neric,reso KYL HA with su Acidity Acidity sytzeff's uses of v STREC of cyclo cen confi ormation	ALIDES itable e y of all rule. P inyl DISOM alkanes guratio al anal	ondlen undhyp S xample cynesA oly ha chlori IERIS s – Bae n and c ysis of	gth,bondan, erconjugativ 9+3 es. Dienes: lkyl halides logen deriv de, all <u>M 10+</u> eyer's strain conformation	gle, bondenergy veeffects. Classification - S: S_N1 and S_N2 atives: Halogen lyl chloride and -3 n theory and it n Fischer butane and 1,2
bondr UNII Alken prepar Mecha deriva allyl i UNII Alicyo modif and S dichlo	Dependentity, dipolen TII - ALIPHA nes: Ozonolysis ration, properti anism – E ₁ and atives of unsatu odide. Syntheti TII - CHEMI clic compound fications. Confect awhorse and No pro ethane Geor	ent bond properties of organi noment, inductive, mesomeric, electrom TIC HYDROCARBONS AND ALL , Hydroboration and polymerization es and uses of Butadiene Alkynes: d E ₂ Mechanism – Hofmann and Sa rated hydrocarbons: Preparation and c applications of Grignard reagents. STRYOFCYCLOALKANES AND s – general methods of preparation ormational analysis: differences betwee Newman projection formulae – confer netrical isomerism – maleic acid and	with sur Acidity aytzeff's uses of v STREC of cyclo cen confi ormation fumaric	ALIDES itable e y of all rule. P rinyl DISOM palkanes guratio nal anal acid – a	ondlen andhyp xample cynesA oly ha chlori IERIS s – Bae n and c ysis of aldoxin	gth,bondanerconjugativ9+3es. Dienes:lkyl halideslogen derivde,allM10+eyer's strainconformationethane, n-nes andke	gle, bondenergy veeffects. Classification - S: S _N 1 and S _N 2 atives: Haloger lyl chloride and -3 n theory and it n Fischer butane and 1,2 toximes E-2
bondr UNII Alken prepar Mech deriva allyl i UNII Alicyo modif and S dichlo notati	D D II - ALIPHA II - ALIPHA Thes: Ozonolysis ration, properti- anism – E ₁ and atives of unsatu- odide. Syntheti- III - CHEMI clic compound fications. Confe- awhorse and No- pro ethane Geon- ons. Optical is	ent bond properties of organi noment, inductive, mesomeric, electrom TIC HYDROCARBONS AND ALL , Hydroboration and polymerization es and uses of Butadiene Alkynes: d E ₂ Mechanism – Hofmann and Sa rated hydrocarbons: Preparation and use capplications of Grignard reagents. STRYOFCYCLOALKANES AND s – general methods of preparation ormational analysis: differences betwee Newman projection formulae – conference netrical isomerism – maleic acid and comerism: definition: optical activity	Neric,rese KYL HA with su Acidity hytzeff's uses of v STREC of cyclo cen confi ormation fumaric y and op	Diable e itable e y of all rule. P inyl DISOM alkanes guratio al anal acid – a ptical is	ondlen andhyp S xample cynesA oly ha chlori IERIS s – Bae n and c ysis of aldoxin someris	gth,bondan, erconjugativ 9+3 es. Dienes: lkyl halides logen deriva de, all M 10+ eyer's strain conformation ethane, n-l nes and ke sm – optica	gle, bondenergy veeffects. Classification - S: S_N1 and S_N2 atives: Haloger lyl chloride and -3 n theory and it n Fischer butane and 1,2 toximes E-2 il isomerism o
bondp UNII Alken prepar Mech deriva allyl i UNII Alicyo modif and S dichlc notati comp	Delarity, dipolen TI - ALIPHA Tes: Ozonolysis ration, properti anism – E ₁ and atives of unsatu odide. Syntheti TII - CHEMI clic compound fications. Confe Sawhorse and Noro oro ethane Georo ons. Optical is ounds containi	ent bond properties of organi noment, inductive, mesomeric, electrom TIC HYDROCARBONS AND ALL , Hydroboration and polymerization es and uses of Butadiene Alkynes: d E ₂ Mechanism – Hofmann and Sa rated hydrocarbons: Preparation and to c applications of Grignard reagents. STRYOFCYCLOALKANES AND s – general methods of preparation ormational analysis: differences betwee Newman projection formulae – confer netrical isomerism – maleic acid and comerism: definition: optical activity ng asymmetric carbon atom – tarta	Neric,rese KYL HA with su Acidity Acidity sytzeff's uses of v STREC of cyclo cen confi ormation fumaric y and op aric acid	Diable e LIDES itable e y of all rule. P inyl DISOM alkanes guratio al anal acid – a ptical is l – ena	ondlen <u>indhyp</u> <u>S</u> xample cynesA oly ha chlori <u>IERIS</u> <u>S</u> – Bae n and c ysis of aldoxim someris ntiome	gth,bondanerconjugativ9+3es. Dienes:lkyl halideslogen derivde,allM10+eyer's strainconformationethane, n-hnes andkemopticaers anddiase	gle, bondenergy veeffects. Classification - S: S_N1 and S_N2 atives: Halogen yl chloride and -3 n theory and it n Fischer butane and 1,2 toximes E-2 d isomerism o stereoisomers -
bondr UNII Alken prepar Mecha deriva allyl i UNII Alicyd modif and S dichlo notatic comportacem	Description II - ALIPHA II - ALIPHA Thes: Ozonolysis ration, properti- anism – E ₁ and atives of unsatu- odide. Syntheti- III - CHEMI clic compound fications. Confect awhorse and Noro ethane Geor- ons. Optical is ounds containi- nic and meso fo	ent bond properties of organi noment, inductive, mesomeric, electrom TIC HYDROCARBONS AND ALL , Hydroboration and polymerization es and uses of Butadiene Alkynes: d E ₂ Mechanism – Hofmann and Sa rated hydrocarbons: Preparation and to c applications of Grignard reagents. STRYOFCYCLOALKANES AND s – general methods of preparation ormational analysis: differences betwee Newman projection formulae – confer netrical isomerism – maleic acid and comerism: definition: optical activity ng asymmetric carbon atom – tarta rms – racemisation – resolution of	with sur Acidity aytzeff's uses of v STREC of cyclo cen confi ormation fumaric y and op aric acid of racer	Diancea LIDES itable e y of all rule. P rinyl DISOM alkanes guratio al anal acid – a ptical is l – ena nic m	ondlen andhyp xample cynesA oly ha chlori IERIS a – Bae n and c ysis of aldoxin someris ntiome ixture	gth,bondanerconjugative9+3es. Dienes:lkyl halideslogen derivede,allM10+eyer's strainconformationethane, n-1nes andkesom - opticaers and dias-Walden	gle, bondenergy veeffects. Classification - S: S _N 1 and S _N 2 atives: Haloger lyl chloride and -3 n theory and it n Fischer butane and 1,2 toximes E-2 al isomerism o stereoisomers - n inversion -
bondr UNII Alken prepar Mecha deriva allyl i UNII Alicya modif and S dichlo notati- comport racem asymi	D D II - ALIPHA II - ALIPHA II - ALIPHA I as: Ozonolysis ration, properti anism – E ₁ and atives of unsatu odide. Syntheti III - CHEMI clic compound fications. Confe awhorse and N pro ethane Geon ons. Optical is ounds containi nic and meso fo metric synthesis	ent bond properties of organi noment, inductive, mesomeric, electrom TIC HYDROCARBONS AND ALL , Hydroboration and polymerization es and uses of Butadiene Alkynes: d E_2 Mechanism – Hofmann and Sa rated hydrocarbons: Preparation and use capplications of Grignard reagents. STRYOFCYCLOALKANES AND s – general methods of preparation ormational analysis: differences betwee Newman projection formulae – confer netrical isomerism – maleic acid and comerism: definition: optical activity ng asymmetric carbon atom – tarta rms – racemisation – resolution of s – chirality – specifications of absolution	with sur Acidity aytzeff's uses of v STREC of cyclo cen confi ormation fumaric y and op aric acid of racer	Diancea LIDES itable e y of all rule. P rinyl DISOM alkanes guratio al anal acid – a ptical is l – ena nic m	ondlen andhyp xample cynesA oly ha chlori IERIS a – Bae n and c ysis of aldoxin someris ntiome ixture	gth,bondan, erconjugativ 9+3 es. Dienes: lkyl halides logen deriva de, all M 10+ eyer's strain conformation ethane, n-l nes and ke sm – optica ers and dias – Walden and S notat	gle, bondenergy veeffects. Classification - S: S _N 1 and S _N 2 atives: Haloger yl chloride and -3 n theory and it n Fischer butane and 1,2 toximes E-2 il isomerism o stereoisomers - n inversion - tions.
bondr UNIT Alken prepar Mech deriva allyl i UNIT Alicyo modif and S dichlo notati compor racem asymi UNIT	Delarity, dipolen TI - ALIPHA Tes: Ozonolysis ration, properti anism – E ₁ and atives of unsatu odide. Syntheti TII - CHEMI clic compound fications. Confect awhorse and No oro ethane Geor ons. Optical is ounds containi nic and meso fo metric synthesis TIV - ALIPHA	ent bond properties of organi noment, inductive, mesomeric, electrom TIC HYDROCARBONS AND ALL , Hydroboration and polymerization es and uses of Butadiene Alkynes: d E ₂ Mechanism – Hofmann and Sa rated hydrocarbons: Preparation and to c applications of Grignard reagents. STRYOFCYCLOALKANES AND s – general methods of preparation ormational analysis: differences betwee Newman projection formulae – confer netrical isomerism – maleic acid and comerism: definition: optical activity ng asymmetric carbon atom – tarta rms – racemisation – resolution of s – chirality – specifications of absolut ATIC ALCOHOLS	Neric,rese KYL HA with su Acidity Acidity aytzeff's uses of v STREC of cyclo cen confii ormation fumaric y and op aric acid of racer tte config	Diancea LIDES itable e y of all rule. P inyl DISOM alkaness guration al anal acid – a ptical is l – ena nic m	ondlen andhyp xample cynesA oly ha chlori IERIS 5 – Bac n and c ysis of aldoxin someris ntiome ixture as by R	gth,bondan erconjugativ 9+3 es. Dienes: lkyl halides logen derive de, all M 10+ eyer's strain conformation ethane, n-l nes and ke sm – optica ers and dias – Walder and S notat	gle, bondenergy veeffects. Classification - S: S_N1 and S_N2 atives: Halogen yl chloride and -3 n theory and it n Fischer butane and 1,2 toximes E-2 il isomerism of stereoisomers - n inversion - tions.
bondr UNII Alken prepar Mech deriva allyl i UNII Alicyo modif and S dichlo notatic comport racem asymi UNII Defini	Delarity, dipolen TII - ALIPHA res: Ozonolysis ration, properti anism – E ₁ and atives of unsatu odide. Syntheti TIII - CHEMI clic compound fications. Confe awhorse and N pro ethane Geon ons. Optical is ounds containi nic and meso fo metric synthesis TIV - ALIPHA ition: Rectified	ent bond properties of organi noment, inductive, mesomeric, electrom TIC HYDROCARBONS AND ALH , Hydroboration and polymerization es and uses of Butadiene Alkynes: d E ₂ Mechanism – Hofmann and Sa rated hydrocarbons: Preparation and use capplications of Grignard reagents. STRYOFCYCLOALKANES AND s – general methods of preparation ormational analysis: differences betwee Newman projection formulae – confer netrical isomerism – maleic acid and comerism: definition: optical activity ng asymmetric carbon atom – tartar rms – racemisation – resolution of s – chirality – specifications of absolut TIC ALCOHOLS d spirit – Absolute alcohol – Me	with sur Acidity Acidity aytzeff's uses of v STREC of cyclo een confi ormation fumaric y and op aric acid of racer the config	Disolution LiDES itable e y of all rule. P rinyl Disolv palkanes guratio acid – a ptical is l – ena mic m guratior	ondlen andhyp xample cynesA oly ha oly ha chlori IERIS s – Bae n and c ysis of aldoxim someris ntiome ixture as by R	gth,bondan; erconjugativ 9+3 es. Dienes: lkyl halides logen deriv de, all M 10+ eyer's strain conformation ethane, n-l nes and ke sm – optica ers and dias – Walder and S notat 7+3 wer alcohe	gle, bondenergy veeffects. Classification - S: S _N 1 and S _N 2 atives: Halogen yl chloride and -3 n theory and it n Fischer butane and 1,2 toximes E-2 al isomerism o stereoisomers - n inversion - tions. bl.Preparation
bondr UNIT Alken prepar Mech deriva allyl i UNIT Alicya modif and S dichla notati- comport racem asymi UNIT Defin proper	Delarity, dipolen TI - ALIPHA Tes: Ozonolysis ration, properti anism – E ₁ and atives of unsatu odide. Syntheti TII - CHEMI clic compound fications. Confe awhorse and N pro ethane Geon ons. Optical is ounds containi nic and meso fo metric synthesis TV - ALIPHA ition: Rectified erties and uses	ent bond properties of organi noment, inductive, mesomeric, electrom TIC HYDROCARBONS AND ALH , Hydroboration and polymerization es and uses of Butadiene Alkynes: d E ₂ Mechanism – Hofmann and Sa rated hydrocarbons: Preparation and use capplications of Grignard reagents. STRYOFCYCLOALKANES AND s – general methods of preparation ormational analysis: differences betwee Newman projection formulae – conferentical isomerism – maleic acid and comerism: definition: optical activity ng asymmetric carbon atom – tarta rms – racemisation – resolution construction of absolution STIC ALCOHOLS d spirit – Absolute alcohol – Me s of allyl alcohol . Polyhydric alcoho	Acidity with su Acidity aytzeff's uses of v STREC of cyclo een confi ormation fumaric y and op aric acid of racer ite config thylated l: Estim	ALIDES itable e y of all rule. P inyl DISOM balkanes aguration acid – a ptical is 1 – ena mic m guration	ondlen andhyp Xample cynesA oly ha chlori IERIS a – Bae n and c ysis of aldoxin someris ntiome ixture as by R	gth, bondan, erconjugativ $erconjugativ9+39+3es. Dienes:lkyl halideslogen derivde,allM10+eyer's strainconformationethane, n-1nes andkes- opticaers and dias- Walderand S notat7+3wer alcoholer$	gle, bondenergy veeffects. Classification - S: S _N 1 and S _N 2 atives: Haloger lyl chloride and -3 n theory and it n Fischer butane and 1,2 toximes E-2 al isomerism of stereoisomers - n inversion - tions. bl. Preparation xyl groups in a
bondr UNII Alken prepar Mech deriva allyl i UNII Alicyo modif and S dichlo notati- comport racem asymi UNII Defin prope	Delarity, dipolen TI - ALIPHA res: Ozonolysis ration, properti anism – E ₁ and atives of unsatu odide. Syntheti TII - CHEMI clic compound fications. Confect awhorse and Noro ethane Geor ons. Optical is ounds containi nic and meso for metric synthesis TV - ALIPHA ition: Rectified erties and uses ydric alcohol.	ent bond properties of organi noment, inductive, mesomeric, electrom TIC HYDROCARBONS AND ALH , Hydroboration and polymerization es and uses of Butadiene Alkynes: d E ₂ Mechanism – Hofmann and Sa rated hydrocarbons: Preparation and to c applications of Grignard reagents. STRYOFCYCLOALKANES AND s – general methods of preparation ormational analysis: differences betwee Newman projection formulae – conferentical isomerism – maleic acid and comerism: definition: optical activity ng asymmetric carbon atom – tarta rms – racemisation – resolution co s – chirality – specifications of absolut ATIC ALCOHOLS d spirit – Absolute alcohol – Me s of allyl alcohol . Polyhydric alcoho Ethers:Estimation of alkoxy groups	heric,reso KYL HA with su Acidity hytzeff's uses of v STREC of cyclo cen confi fumaric y and op aric acid of racer thylated l: Estim – Zeisel	Disolution LIDES itable e y of all rule. P inyl DISOM palkaness guration al anal acid – a ptical is l – ena mic m guration spirit ation of 's meth	ondlen andhyp xample cynesA oly ha chlori IERIS a – Bac n and c ysis of aldoxin someris ntiome ixture as by R – Po f numb	gth,bondan erconjugativ 9+3 es. Dienes: lkyl halides logen derive de, all M 10+ eyer's strain conformation ethane, n-l nes and ke sm – optica ers and dias – Walder and S notat 7+3 wer alcoho preparation	gle, bondenergy veeffects. Classification - S: S _N 1 and S _N 2 atives: Halogen yl chloride and -3 n theory and it n Fischer butane and 1,2 toximes E-2 al isomerism of stereoisomers - n inversion - tions. DI.Preparation xyl groups in a of chlorex and
bondr UNIT Alken prepar Mech deriva allyl i UNIT Alicyo modif and S dichlo notati- comport racem asymi UNIT Defin polyh vinyl	Delarity, dipolen TII - ALIPHA res: Ozonolysis ration, properti anism – E ₁ and atives of unsatu odide. Syntheti TII - CHEMI clic compound fications. Confe awhorse and N pro ethane Geon ons. Optical is ounds containi nic and meso fo metric synthesis TV - ALIPHA ition: Rectified ether. Thioald	ent bond properties of organi noment, inductive, mesomeric, electrom TIC HYDROCARBONS AND ALH , Hydroboration and polymerization es and uses of Butadiene Alkynes: d E ₂ Mechanism – Hofmann and Sa rated hydrocarbons: Preparation and use capplications of Grignard reagents. STRYOFCYCLOALKANES AND s – general methods of preparation ormational analysis: differences betwee Newman projection formulae – confer netrical isomerism – maleic acid and comerism: definition: optical activity ng asymmetric carbon atom – tarta rms – racemisation – resolution of s – chirality – specifications of absolut TIC ALCOHOLS d spirit – Absolute alcohol – Me s of allyl alcohol . Polyhydric alcoho Ethers:Estimation of alkoxy groups – schols and thioethers: Preparation	Neric,rese KYL HA with sur- Acidity Acidity aytzeff's uses of v STREC of cyclo cen confi ormation fumaric y and op aric acid of racer thylated l: Estim – Zeisel a and us	Disolution LIDES itable e y of all rule. P rinyl DISOM Dalkanes guratio acid – a palkanes guratio acid – a ptical is 1 – ena mic m guratior spirit ation of 's meth ses of	ondlen andhyp xample cynesA oly ha chlori IERIS a – Bae n and c ysis of aldoxim someris ntiome ixture as by R – Po f numb nod – j ethyl 1	gth,bondan; erconjugativ 9+3 es. Dienes: lkyl halides logen derive de, all M 10+ eyer's strain conformation rethane, n-l nes and ke sm – optica ers and dias – Walder and S notat 7+3 wer alcoho preparation nercaptan,	gle, bondenergy veeffects. Classification - S: S _N 1 and S _N 2 atives: Halogen yl chloride and -3 n theory and it n Fischer butane and 1,2 toximes E-2 d isomerism of stereoisomers - n inversion - tions. bl.Preparation xyl groups in a of chlorex and diethyl ether
bondr UNIT Alken prepar Mech deriva allyl i UNIT Alicyo modif and S dichlo notati- comporacem asymi UNIT Defin prope polyh vinyl	Delarity, dipolen TI - ALIPHA res: Ozonolysis ration, properti anism – E ₁ and atives of unsatu odide. Syntheti TII - CHEMI clic compound fications. Confe Sawhorse and N pro ethane Geor ons. Optical is ounds containi nic and meso fo metric synthesis TV - ALIPHA ition: Rectified ether. Thioalch onal and must	ent bond properties of organi noment, inductive, mesomeric, electrom TIC HYDROCARBONS AND ALH , Hydroboration and polymerization es and uses of Butadiene Alkynes: d E ₂ Mechanism – Hofmann and Sa rated hydrocarbons: Preparation and to c applications of Grignard reagents. STRYOFCYCLOALKANES AND s – general methods of preparation ormational analysis: differences betwee Newman projection formulae – conferentical isomerism – maleic acid and comerism: definition: optical activity ng asymmetric carbon atom – tarta rms – racemisation – resolution co s – chirality – specifications of absolut ATIC ALCOHOLS d spirit – Absolute alcohol – Me s of allyl alcohol . Polyhydric alcoho Ethers:Estimation of alkoxy groups	Acidity with su Acidity aytzeff's uses of v STREC of cyclo een confi ormation fumaric y and op aric acid of racer thylated l: Estim – Zeisel and us aration	Disordancea LIDES itable e y of all rule. P inyl DISOM Dalkanes aguration acid – a ptical is 1 – ena mic m guration l spirit ation of 's meth ses of and pr	ondlen andhyp xample cynesA oly ha chlori IERIS a – Bae n and c ysis of aldoxim someris ntiome ixture as by R – Po f numb nod – j ethyl 1	gth,bondan; erconjugativ 9+3 es. Dienes: lkyl halides logen derive de, all M 10+ eyer's strain conformation rethane, n-l nes and ke sm – optica ers and dias – Walder and S notat 7+3 wer alcoho preparation nercaptan,	gle, bondenergy veeffects. Classification - S: S _N 1 and S _N 2 atives: Haloger yl chloride and -3 n theory and it n Fischer butane and 1,2 toximes E-2 al isomerism of stereoisomers - n inversion - tions. bl.Preparation xyl groups in a of chlorex and diethyl ether action.

Mechanism of nucleophilic addition to Carbonyl compounds - Hemiacetal and Acetal formations -Cyanohydrin formation – Meerwein-Pondorf-Varleyreduction – Oppaenaur idation – preparation of Acrolein, Crotonaldehyde, Chloral, Hydroxy acetone and Acetylacetone Carboxylic acids and their derivatives: Structure of carboxylic acids – acidity of carboxylic acids - effect of subsituents on acidity – preparation of acrylic acid and crotonic acid. Halogensubstituted acids: Preparation and properties of mono, di and tri chloro carboxylic acids – Hydroxy acids. Dicarboxylic acids: Preparation of Malonic acid and Malonic ester – Synthetic applications of diethyl malonate– Action of heat on dicarboxylic acids

	LECTURE	TUTORIAL	PRACTICAL	SELF STUDY	TOTAL
HOURS	45	15	0	0	60
TEYT BOO	JKS				

IEXI BUUKS

- a. MorrisonR.T. and BoydR.N., OrganicChemistry(6thedition),NewYork,Allyn&BaconLtd.,(1976).
- b. BahlB.S. andArunBahl, AdvancedOrganicChemistry,(12thedition),NewDelhi,SultanChand&Co., (1997).
- c. Organic Chemistry Volume I", I.L.Finar
- d. Organic Chemistry Volume II", I.L.Finar
- e. Organic Chemistry J.Clayden
- f. Organic Chemistry Jerry March
- g. Organic Chemistry Mc muray
- h. Organic Chemistry", P.L.Soni
- i. Advanced Organic Chemistry", B.S.Bahl and Arun Bahl
- j. Organic Chemistry", R.T.Morrison and R.W.Boyd

REFERENCES

1. Organic Chemistry, Paula, Yurkanis and Bruice

2.Mukul C. RayReaction Mechanisms in Organic Chemistry

3. P.L. Kalsi, Organic Reactions and Their Mechanisms

E RESOURCES

https://www.mooc-list.com/course/organic-chemistry-i-saylororg

https://www.canvas.net/courses/exploring-chemistry

https://www.youtube.com/watch?v=nB9yqj-ZcAk

http://freevideolectures.com/Course/3001/Chemistry-I/3

https://ocw.mit.edu/courses/chemistry/5-12-organic-chemistry-i-spring-2005/

http://freevideolectures.com/Course/3001/Chemistry-I

http://freevideolectures.com/Course/2384/Freshman-Organic-Chemistry

COUR	SE CODE	XCY205	L	Т	P	SS	С
	SE NAME	PHYSICAL CHEMISTRY I	3	1	0	0	4
PRER	QUISITE	NIL	L	Т	Р	SS	Н
C:P:A	-	2.8:0.4:0.8	3	1	0	0	4
COUR	SE OUTCOM	IES		DOM	IAIN	LEVE	L
CO1	Classify the t	ypes of Molecular velocity of gases a	nd	Cogn	itive	Unders	tand
	kinetic theory	of gases; Derive vanderwalls equation	on of				
	real gases.						
CO2		entify the structure and properties of s	solid	Cogn	itive	Remen	nber
<u> </u>	state.					Apply	
CO3		entify the structure and properties of l	iquid	Cogn		Remen	nber
004	crystals and		• .7	Affec		Apply	1
CO4		concepts of colloidal state and <i>explan</i>	in the	Cogn	itive	Remen	
COF	types of Emul			Com	itirra	Respon Remen	
CO5		rinciples of chemical equilibrium and		Cogn Affec		Receiv	
TINIT I	- GASEOUS	neory behind the catalysis.		Allec	uve	Receiv	<u>e</u> 9+3
		$\frac{31A1E}{es}$ – equation of kinetic theory of ga	ses d	erivatio	on of g	as laws f	
	• •	eory of gases. Ideal gases and real g			-		
		an der waal's equation (Derivation)					
		erms – Andrew'sexperiment-critica					
		critical constants – relation between					
		eory of gases: Mean free path – c					
		RMS velocity, Most probable veloci		-	-		
-	-	lar velocities (No derivation)	und	11,0105			51021110011
	I - SOLID ST					9	9+3
Crystall	ography — I	Definition: unit cell, crystal lattice a	nd inte	erfacial	angle	Crystallo	graphic
		es – simple, cubic, face-centered cubic			-	d cubic s	
		nic crystal – Structure of NaCl – M		ar crys	tals: St	ructure o	of Ice –
		ucture of diamond and graphite – m					
electrica	al properties -	Conductors, semiconductors and in	sulator	s – sup	er conc	luctors –	simple
explana	tion with exan	ples – Defects in crystals.		-			-
UNIT I	II - LIQUID	STATE, LIQUID CRYSTALS -AN	D AD	SORPT	TION	9	9+3
Theory	of liquids –	free volume of liquids - Vapour p	ressure	e – Sur	face e	ension, e	ffect of
tempera	ture on surfac	e tension, parachor – Viscosity, effe	ct of te	emperat	ure on	viscosity	– hole
		nber – structure of liquids.Trouton's 1					
		id crystals– Transformation into the n					
	-	pate, adsorbent and interface – Di		-		ysisorpti	on and
		actants.Adsorption of gases on solid			-	• •	
		Applications of adsorptions.				-	
	V - COLLOI					1	0+3
types of	f colloids – so	ols – Lyophilic sols and lyophobic s	ols – p	oroperti	es of c	olloids –	optical
		ect) – kinetic property (Brownian m	-	-			-
		, zeta potential, electrophoresis and e					
	•	ve colloids – Gold number – floccula				•	
0	1						

GELS: Elastic and non-elastic gels – imbibition – syneresis – thixotropyEmulsions: Definition – types of emulsions – emulsifiers – Bancroft's rule HLB number. Applications of colloids: Cottrel precipitator – Sewage disposals – detergent action of soaps – artificial rain – formation of delta – smoke screens.

UNIT V - CHEMICAL EQUILIBRIUM

8+3

Reversible and irreversible reactions – statement of law of mass action – Derivation of law of mass action from kinetic theory – Relationship between Kp and Kc (derivation). Applications of Law of mass action to the equilibria involving the formation of NH_3 , dissociation of $CaCO_3$ and the dehydration of $CuSO_4.5H_2O$. Lechatelier's principle: statement – application to the formation of NH_3 .

CATALYSIS: Homogeneous and heterogeneous catalysis – promoters and catalytic poisons – auto catalysis – Acid-base catalysis – Enzyme catalysis –Kinetics of enzymed catalysed reaction.

	LECTURE	TUTORIAL	PRACTICAL	SELF STUDY	TOTAL
HOURS	45	15	0	0	60

TEXT BOOKS

1. GlasstoneS., LewisD., ElementsofPhysicalChemistry, London, MacMillan&Co.Ltd.

- 2. Principles of Physical Chemistry", B.R.Puri and L.R.Sharma
- 3. Principles of Physical Chemistry", B.R.Puri, L.R.Sharma and M.S.Pathania
- 4. Physical Chemistry", N.Kundu and SN.Jain
- 5. Physical Chemistry", Peter Atkins Julio de paula

REFERENCES

1. Physical Chemistry: A Molecular Approach Donald A. McQuarrie

2.Physical Chemistry.G.W.Ball

3.Solid state and its applications, Anthony. R. West.

4. Physical Chemistry Volume-1, A. K. Nag.

E RESOURCES

1. <u>https://www.youtube.com/watch?v=A1p4j_aHdbw</u>

2.<u>https://www.youtube.com/watch?v=gvq2QZ38n9U</u>

3.https://www.mooc-list.com/course/Physical-chemistry-i-saylororg

	DDE	XCY30	3		L	Т	P	SS	С	
COURSE NA	AME	INORG	ANIC CHEMIS	ΓRY II	3	1	0	0	4	
PREREQUI	SITE	NIL			L	Т	P	SS	Η	
C:P:A		3.2:0:0.	8		3	1	0	0	4	
COURSE O	UTCOM	IES			DON	/IAIN	Ι	LEVEI	4	
CO1 Expla	<i>in</i> the v	various co	ompounds of halo	ogens and	Cogr	nitive	J	Understand		
carbor	1.									
CO2 Descri		<u> </u>	s structure of pera			nitive	F	Remem	ber	
CO3 Recog	<i>nize</i> the	e general	characteristics and	1		nitive		Apply		
		ansition e			Affe			Receivi		
•	• •		aracteristics and	properties	0	nitive		Remem		
		and Acti			Affe			Respon	ling	
		••	ne various prope	erties and	Cogr	nitive		Apply		
	0 0		llic compounds.					Remem		
			BON AND NOBL						<u>10+3</u>	
			e properties of ha							
		-	ion of fluorine – J	-			•	-		
			tion properties an							
			on Compounds: X oseudohalides defi				17 ly	pes an	a mei	
			ids: Types of c ar		1		ic a	nd inte	ratitio	
			s - oxides of carb							
fullerenes.	sundone	example		on oxy a		i curt		curoo	intes	
	mpound	s : prepara	ation and propertie	es of xenon	fluori	des ar	nd ox	vfluori	de an	
kryptonfluori	-									
UNIT II - PE		S AND F						6	⊦3	
		BANDI	EKSALIS					0-		
	propert			onosulphu	ric	acid,	, pe	erdisul		
Preparation,		ties and s	ERSALTS tructure of perm phate. Preparatio				-	erdisul	phuri	
Preparation, acid and pot	assium	ties and s perdisulj	tructure of perm				-	erdisul	phuri	
Preparation, acid and pot acid, perdica	assium rbonic a	ties and s perdisulj acid and j	tructure of perm phate. Preparatio	on and pro	pertie		-	erdisul 10noca	phuri	
Preparation, acid and pot acid, perdica UNIT III - T	assium rbonic a RANSIT	ties and s perdisulj acid and J FION EL	tructure of perm phate. Preparatio perdicarbonates.	on and pro	o <mark>pertie</mark> DY	es of j	pern	erdisul 10noca 9-	phurio rbonio +3	
Preparation, acid and pot acid, perdica UNIT III - T Transition el reference to	assium rbonic a RANSII lements-j electron	ties and s perdisulg acid and FION EL position ic config	tructure of perm phate. Preparation perdicarbonates. EMENTS - GRO in the periodic ta uration, variable	DUP STUE able Gener valency, c	Pertie PY al gro olour,	es of j oup tr magr	ends	erdisul nonoca 9- with and ca	phurio rbonio ⊦3 specia atalytio	
Preparation, acid and pot acid, perdica UNIT III - T Transition el reference to properties, al	assium rbonic a RANSIT lements-j electron bility to	ties and s perdisulg acid and FION EL position tic config form con	tructure of permonates. Preparation perdicarbonates. EMENTS - GRO in the periodic ta uration, variable nplexes and stabi	DUP STUE OUP STUE able Gener valency, co lity of vari	Pertie DY al gro olour, ous o	oup tr magr magr	ends netic on st	erdisul nonoca 9- with and ca tates (I	phuri rboni +3 specia atalytic atime	
Preparation, acid and pot acid, perdica UNIT III - T Transition el reference to properties, al diagrams) for	assium rbonic a RANSII lements-j electron bility to or Mn, F	ties and s perdisulg acid and FION EL position tic config form con Fe and C	tructure of perm phate. Preparation perdicarbonates. EMENTS - GRO in the periodic ta uration, variable nplexes and stabi u. Chemistry of	DUP STUE able Gener valency, culity of vari titanium di	Pertic DY al gro olour, ous o oxide	oup tr magr xidatio , titan	ends netic on st	erdisul ionoca 9- with and ca tates (I tetrach	phuri rboni ⊦3 specia atalyti atime lloride	
Preparation, acid and pot acid, perdica UNIT III - T Transition el reference to properties, al diagrams) fo vanadium pe	assium rbonic a RANSII lements-j electron bility to or Mn, F enta oxid	ties and s perdisulg acid and TION EL position tic config form con Fe and C le-ammor	tructure of permonates. perdicarbonates. EMENTS - GRO in the periodic ta puration, variable nplexes and stabi u. Chemistry of nium vanadate, an	DUP STUE able Gener valency, co lity of vari titanium di nmonium r	Pertic DY al gro olour, ous o oxide	oup tr magr xidatio , titan	ends netic on st	erdisul ionoca 9- with and ca tates (I tetrach	phuri rboni ⊦3 specia atalyti .atime lloride	
Preparation, acid and pot acid, perdica UNIT III - T Transition el reference to properties, al diagrams) fo vanadium pe tungsten oxid	assium rbonic a RANSII lements-j electron bility to bility to or Mn, F enta oxid le, tungsi	ties and s perdisulg acid and FION EL position tic config form con form con Fe and C le-ammor ten bronz	tructure of perm phate. Preparation perdicarbonates. EMENTS - GRO in the periodic ta uration, variable nplexes and stabi u. Chemistry of nium vanadate, an e, zirconium halid	DUP STUE OUP STUE able Gener valency, cu lity of vari titanium di nmonium ru e.	Pertic DY al gro olour, ous o oxide	oup tr magr xidatio , titan	ends netic on st	with and ca tates (I tetrach bdenun	phuri rboni +3 specia atalyti atime loride n blue	
Preparation, acid and pot acid, perdica UNIT III - T Transition el reference to properties, al diagrams) fo vanadium pe tungsten oxic UNIT IV - L	assium rbonic a RANSII lements-j electron bility to or Mn, F onta oxid le, tungst ANTHA	ties and s perdisulg acid and FION EL position tic config form con fe and C le-ammor ten bronz	tructure of perm phate. Preparation perdicarbonates. EMENTS - GRO in the periodic ta uration, variable nplexes and stabi u. Chemistry of nium vanadate, an e, zirconium halid AND ACTINIDE	DUP STUE able Gener valency, cu lity of vari titanium di nmonium r e. S	Pertie DY al gro olour, ous o oxide, nolybo	bup tr magr xidation titan late, r	ends netic on st ium noly	erdisul ionoca 9- with and ca tates (L tetrach bdenun	phuri rboni rboni +3 specia atalyti atime loride n blue D+3	
Preparation, acid and pot acid, perdica UNIT III - T Transition el reference to properties, al diagrams) fo vanadium pe tungsten oxic UNIT IV - L	assium rbonic a RANSII lements-j electron bility to or Mn, F onta oxid le, tungsi ANTHA lanthanic	ties and s perdisulg acid and FION EL position tic config form con form con Fe and C le-ammor ten bronz NIDES A des actin	tructure of perm phate. Preparation perdicarbonates. EMENTS - GRO in the periodic ta uration, variable nplexes and stabi u. Chemistry of hium vanadate, an e, zirconium halid AND ACTINIDE ides in the period	DUP STUE able Gener valency, co- lity of vari titanium di nmonium r e. S odic table	Pertie DY al gro olour, ous o oxide nolybo – Elo	oup tr magr xidatio , titan late, 1	ends netic on st noly ic c	erdisul ionoca 9- with and ca tates (I tetrach bdenun 10 onfigur	phuri rboni rboni +3 specia atalyti atalyti atime lloride n blue 0+3 ations	
Preparation, acid and pot acid, perdica UNIT III - T Transition el reference to properties, al diagrams) fo vanadium pe tungsten oxic UNIT IV - L Position of oxidation st	assium rbonic a RANSII lements-j electron bility to or Mn, F onta oxid le, tungsi ANTHA lanthanic	ties and s perdisulg acid and FION EL position tic config form con form con Fe and C le-ammor ten bronz NIDES A des actin	tructure of perm phate. Preparation perdicarbonates. EMENTS - GRO in the periodic ta uration, variable nplexes and stabi u. Chemistry of nium vanadate, an e, zirconium halid AND ACTINIDE	DUP STUE able Gener valency, co- lity of vari titanium di nmonium r e. S odic table	Pertie DY al gro olour, ous o oxide nolybo – Elo	oup tr magr xidatio , titan late, 1	ends netic on st noly ic c	erdisul ionoca 9- with and ca tates (I tetrach bdenun 10 onfigur	phurie rbonie rbonie +3 specia atalytie atalytie atalytie atalytie atalytie atalytie atalytie atalytie atalytie atalytie atalytie atalytie but but but but but but but but but but	
Preparation, acid and pot acid, perdica UNIT III - T Transition el reference to properties, al diagrams) fo vanadium pe tungsten oxid UNIT IV - L Position of oxidation st contraction.	assium rbonic a RANSII lements-j electron bility to or Mn, F enta oxid le, tungst ANTHA lanthanic tates, co	ties and s perdisulg acid and FION EL position tic config form con Fe and C le-ammor ten bronz NIDES A des actin plour, m	tructure of perm phate. Preparation perdicarbonates. EMENTS - GRO in the periodic ta uration, variable nplexes and stabi u. Chemistry of ium vanadate, an e, zirconium halid AND ACTINIDE ides in the period agnetic propertie	DUP STUE able Gener valency, co- lity of vari titanium di nmonium r e. S odic table es, lanthar	Py al gro olour, ous o oxide nolybo – Elo nide	bup tr magr xidatio , titan late, 1 ectron contra	ends netic on st ium noly ic c	erdisul ionoca 9- with and ca tates (I tetrach bdenum 10 onfigun	phurie rbonie rbonie specia atalytie at	
Preparation, acid and pot acid, perdica UNIT III - T Transition el reference to properties, al diagrams) fo vanadium pe tungsten oxid UNIT IV - L Position of oxidation st contraction. Occurrence	assium rbonic a RANSII lements-j electron bility to or Mn, F onta oxid le, tungsi ANTHA lanthanic ates, co and gen	ties and s perdisulj acid and FION EL position ic config form con fe and C le-ammor ten bronz NIDES A des actin olour, m	tructure of perm phate. Preparation perdicarbonates. EMENTS - GRO in the periodic ta uration, variable nplexes and stabi u. Chemistry of nium vanadate, an e, zirconium halid AND ACTINIDE ides in the period agnetic propertion	DUP STUE able Gener valency, co- lity of vari titanium di nmonium r e. S odic table es, lanthar	pertie DY al gro olour, ous o oxide nolybe - Ele nide o nthan	es of poup tr magr xidatio , titan late, r ectron contra	ends netic on st noly ic c ctior	erdisul ionoca 9- with and ca tates (I tetrach bdenun 10 onfigur 1 – a	phurie rbonie rbonie specia atalytie at	
Preparation, acid and pot acid, perdica UNIT III - T Transition el reference to properties, al diagrams) fo vanadium pe tungsten oxid UNIT IV - L Position of oxidation st contraction. Occurrence trihalides, id	assium rbonic a RANSII lements-j electron bility to or Mn, F onta oxid le, tungst ANTHA lanthanic ates, co and gen on excha	ties and s perdisulj acid and FION EL position tic config form con fe and C le-ammor ten bronz NIDES A des actin olour, m neral me ange and	tructure of perm phate. Preparation perdicarbonates. EMENTS - GRO in the periodic ta uration, variable nplexes and stabi u. Chemistry of nium vanadate, an e, zirconium halid AND ACTINIDE ides in the period agnetic properties ethods of extract valence exchange	DUP STUE able Gener valency, cu lity of vari titanium di nmonium r e. S odic table es, lanthar ction of la ge methods	Pertic DY al gro olour, ous o oxide nolybo - Elo nide nthan s. Isol	es of pup tr magr xidation , titan late, r ectron contra ides ation	ends netic on st ium noly ic c ctior by 1	erdisul nonoca 9- with and ca tates (I tetrach bdenum 10 onfigun n – a reducin horiun	phurie rbonie rbonie specia atalytie atalytie atalytie atalytie atalytie atalytie atalytie bar blue blue blue cations ctinide ng the fron	
Preparation, acid and pot acid, perdica UNIT III - T Transition el reference to properties, al diagrams) fo vanadium pe tungsten oxic UNIT IV - L Position of oxidation st contraction. Occurrence trihalides, ic monazite –	assium rbonic a RANSII lements-j electron bility to or Mn, F nta oxid le, tungsi ANTHA lanthanic ates, co and ger on excha Prepara	ties and s perdisulj acid and FION EL position tic config form con Fe and C le-ammor ten bronz NIDES A des actin olour, m neral me ange and ation pro	tructure of permiphate. Preparation perdicarbonates. EMENTS - GRO in the periodic ta uration, variable nplexes and stabi u. Chemistry of ium vanadate, an e, zirconium halid AND ACTINIDE ides in the period agnetic properties ethods of extract valence exchange operties and use	DUP STUE able Gener valency, cu lity of vari titanium di nmonium r e. S odic table es, lanthar ction of la ge methods	Pertic DY al gro olour, ous o oxide nolybo - Elo nide nthan s. Isol	es of pup tr magr xidation , titan late, r ectron contra ides ation	ends netic on st ium noly ic c ctior by 1	erdisul nonoca 9- with and ca tates (I tetrach bdenum 10 onfigun n – a reducin horiun	phurio rbonio rbonio specia atalytio atime loride n blue 0+3 cations ctinido ng tho n fron	
Preparation, acid and pot acid, perdica UNIT III - T Transition el reference to properties, al diagrams) fo vanadium pe tungsten oxid UNIT IV - L Position of oxidation st contraction. Occurrence trihalides, ic monazite – halides of ce	assium rbonic a RANSII lements-j electron bility to or Mn, F onta oxid le, tungsi ANTHA lanthanic ates, co and gen on excha Prepara rium an	ties and s perdisulj acid and FION EL position tic config form con Fe and C le-ammor ten bronz NIDES A des actin olour, m neral me ange and ation pro-	tructure of permiphate. Preparation perdicarbonates. EMENTS - GRO in the periodic ta uration, variable nplexes and stabi u. Chemistry of ium vanadate, an e, zirconium halid AND ACTINIDE ides in the period agnetic properties ethods of extract valence exchange operties and use	DUP STUE able Gener valency, co- lity of vari titanium di nmonium r e. S odic table es, lanthar tion of la ge methods s of oxide	pertie DY al gro olour, ous o oxide nolybe - Ele nide nthan s. Isol ss, ox	es of j oup tr magr xidatio, titan late, r late, r ectron contra iides ation y acio	ends netic on st noly ic c ctior by 1 of t ds, 1	erdisul nonoca 9- with and ca tates (L tetrach bdenum 10 onfigur n – a reducin horium	phurie rbonie rbonie specia atalytie atalytie atalytie atalytie atalytie atalytie atalytie be atalytie	

properties of lanthanides - Applications of lanthanides and actinides.						
	UNIT V - ORGANO METALLIC COMPOUNDS10+3					
Definition and Classification with appropriate examples based on nature of metal-carbon						
bond (ion	ic, s, p and m	ulticentre bond	s). Structures of	methyl lithium, Z	eiss salt and	
ferrocene.	EAN rule a	s applied to c	arbonyls. Prepar	ation, structure, l	oonding and	
				d metals. p-accept		
	-	-	B approach)- (MC	diagram of CO ca	n be referred	
to for syne	ergic effect to I	. /	ſ			
	LECTURE	TUTORIAL	PRACTICAL	SELF STUDY	TOTAL	
HOURS	45	15	0	0	60	
TEXT BC	OOKS					
1. "Inorga	nic Chemistry"	, P.L.Soni				
2. "Inorga	nic Chemistry"	, Puri and Sharn	na			
3. "Advan	ced Inorganic (Chemistry", R.D	.Madan			
REFERE	NCES					
1. "Basic l	norganic Chen	nistry", F.A. Cot	ton and Wilkinos	1		
	2. "In-organic Chemistry", Shriver and Atkins					
-	•	, James E.Huhe	•			
	•	emistry", J.D.Le				
5. "Fundar	mentals of Inor	ganic Chemistry	", Gilreath			

COU	RSE CODE	XCY304	L	Т	Р	SS	С
COU	RSE NAME	ORGANIC CHEMISTRY II	3	1	0	0	4
C:P:A		3.2:0:0.8	L	Т	Р	SS	Η
			3	1	0	0	4
COU	RSE OUTCOM	UTCOMES DOMAIN LEVEL					•
CO1	<i>Explain</i> the print its substitution	rinciple of atomic structure and and	Cogn	itive	Und	erstar	ding
CO2	Describe t	he phenol, ethers and aryl halides some naming reactions.	Cogn	itive	Rem	embe	er
CO3		mpounds of amines and diazonium	Cogn Affec		App Rece	ly eiving	r
CO4		various structures of amino acids, oteins	Cogn	itive	Und	erstar ondi	ding
CO5		eneral properties of carbohydrates.	Cogn		-	embe	-
		IC COMPOUNDS	205II			9+3	
		Aromatic hydrocarbons – aromaticit	v and	Hucke	l's rul		
applic Mecha nucleo Direct	ations.Aromatic anism of Halog ophilic and free r ive influence of vating groups –	substitution: Electrophilic substituti genation, Nitration, Sulphonation and adical substitution with suitable exam substituents: Orientation – Effect of - Rules of disubstitution and trisub	on wit d Frie ples. substi	h suita del-Cra ituents	able e aft's 1 – acti	examp reaction ivatin	oles – ons – g and
UNIT	II - PHENOLS	S, ETHERS AND ARYL HALIDES				10	+3
Reacti Reime Schott Aryl Sandn substit Mecha	ons: Electroph erTiemann Reac ten – Baumann H Halides Prepar neyer & Gattern tution (replacen anism: KNH ₂ /NI	aration: Cumene hydroperoxide met nilic substitution: Nitration, halog etion, Gattermann-Koch Reaction, H Reaction. Ethers (aromatic): Cleavage e ation: (Chloro, bromo and iodo-b nann reactions. Reactions (Chlorober nent by –OH group) and effect o H ₃ (or NaNH ₂ /NH ₃). Reactivity and R enzyl, vinyl and aryl halides. preparatio	genatio ouben- of ethe enzene nzene): f nitro	on and -Hoesc rs with e case) Arom o subst e streng	d su h Co HI.): fro atic n tituent gth of	lphon ndens m pl ucleo c. Be C-Ha	ation. ation, henol, philic nzyne
		AND DIAZONIUM SALTS				9+	3
Amine Gabrie Saytze substit Prepar Deriva phthal	es (Aliphatic ar el's Phthalimide eff elimination, tution (case ar ration: from arc atives of phtha imide. Preparati	nd Aromatic): (Upto 5 carbons) Pre synthesis, Hofmann Bromamide reac Carbylamine test, Hinsberg test, niline): nitration, bromination, sulp omatic amines. Reactions: conversion lic acid: preparation and properties on of the following compounds and t ic acid, aspirin and methyl salicylate.	with with with whonat with to with to	Reactio HNC ion. E penzen hthalic	ns: H D ₂ . E Diazon e, pho c anhy	yl ha ofman lectro ium enol, ydride	nlides, nn vs. philic salts: dyes. e and
UNIT	IV - AMINO A	CIDS, PEPTIDES AND PROTEIN	S			9+	3
Amin using	o Acids, Peptid Gabriel's p	es and Proteins: Preparation of Ami hthalimide synthesis. Zwitterion ctions of Amino acids: ester of –CC	ino Ac n, Is	oelectr	ic p	oint	and

NH2 group, complexation with Cu^{2+} ions, ninhydrin test. Overview of Primary, Secondary, Tertiary and Quaternary Structure of proteins. Synthesis of simple peptides (upto dipeptides) by N-protection (t-butyloxycarbonyl and phthaloyl) & C activating groups and Merrifield solid-phase synthesis.

UNIT V - CARBOHYDRATES

8+3

Classification, and General Properties, Glucose and Fructose (open chain and cyclic structure), Determination of configuration of monosaccharides, absolute configuration of Glucose and Fructose, Mutarotation, ascending and descending in monosaccharides. Structure of disacharrides (sucrose, cellobiose, maltose, lactose) and polysacharrides (starch and cellulose) excluding their structure elucidation. Oils and fats: definition – determination and application – saponification value –

iodine value – Reichert-Meissel value – acid value.

	LECTURE	TUTORIAL	PRACTICAL	SELF STUDY	TOTAL
HOURS	45	15	0	0	60
	NOT ZCI				

TEXT BOOKS

- 1. "Organic Chemistry", P.L.Soni
- 2. "Advanced Organic Chemistry", B.S.Bahl and Arun Bahl
- 3. "Organic Chemistry", R.T.Morrison and R.W.Boyd

REFERENCES

- 1. "Organic Chemistry Volume I", I.L.Finar
- 2. "Organic Chemistry Volume II", I.L.Finar
- 3. "Reaction Mechanism of Organic Compounds" Jerry March
- 4. "Organic Chemistry" J. Clayden
- 5. Kotz, J.C., Treichel, P.M. & Townsend, J.R. General Chemistry, Cengage Learning India Pvt. Ltd.: New Delhi (2009).
- 6. Mahan, B.H. University Chemistry, 3rd Ed. Narosa (1998).
- 7. Petrucci, R.H. General Chemistry, 5th Ed., Macmillan Publishing Co.: New York (1985).
- 8. Nelson, D. L. & Cox, M. M. Lehninger's Principles of Biochemistry 7th Ed.,

9.W. H. Freeman. Berg, J.M., Tymoczko, J.L.& Stryer, L. Biochemistry, W.H. Freeman, 2002.

	RSE CODE	XCY403	L	Т	Р	SS	С
COUF	RSE NAME	PHYSICAL CHEMISTRY II	3	1	0	0	4
C:P:A		3.6:0:0.4	L	Т	Р	SS	Н
			3	1	0 0		4
COUR	RSE OUTCOM	IES	DOM	IAIN	LE	VEL	•
CO1	Explain the pr	inciple thermodynamics and its laws	Cognitive Understand			ding	
	applications.						
CO2	Apply the rate	e and its half life for the chemical	Cogn	itive	A	pply	
	reactions		Affec			eiving	
CO3		various concepts and laws of	Cogn	itive	Unc	lerstan	ding
	solutions.						
CO4	••	various component system and its	Cogn		und	erstan	ding
	equilibrium.		Affec				
CO5		basic concepts in electro chemistry	Cogn	itive	App	•	
		<i>n</i> of conductance and for finding the			Ren	nembe	r
	emf of the cell.						
	I - THERMOI					9+3	
		-Review of thermodynamics and the					
-	1 1	and definitions of thermochemistry. C	-				
		f formations, integral and differentia				olutioi	
(11)1T10	n calculation c						f
		of bond energy, bond dissociation energy.					
thermo	ochemical data.	Variation of enthalpy of a reaction w	ith ten	nperatu	ıre –	Kirch	hoff's
thermo equation	ochemical data. on. Statement	Variation of enthalpy of a reaction w of Third Law of thermodynamics	ith ten	nperatu	ıre –	Kirch	hoff's
thermo equation entrop	ochemical data. on. Statement ies of substance	Variation of enthalpy of a reaction w of Third Law of thermodynamics s.	ith ten	nperatu	ıre –	Kirchl of ab	hoff's solute
thermo equation entropy UNIT	ochemical data. on. Statement ies of substance II - CHEMIC	Variation of enthalpy of a reaction w of Third Law of thermodynamics s. AL KINETICS	ith ten and c	nperatu alculat	ire – tion	Kirchl of abs	hoff's solute 3
thermo equation entrop UNIT Rate o	ochemical data. on. Statement ies of substance II - CHEMIC of reactions – ra	Variation of enthalpy of a reaction w of Third Law of thermodynamics s. AL KINETICS the constant – order and molecularity	ith ten and c of rea	nperatu alculat	ire – tion – firs	Kirchl of abs 9+. st orde	hoff's solute 3 er and
thermo equation entropy UNIT Rate of pseudo	ochemical data. on. Statement ies of substance II - CHEMIC of reactions – ra	Variation of enthalpy of a reaction w of Third Law of thermodynamics s. AL KINETICS the constant – order and molecularity reactions (definition and examples) –	ith ten and c of readerivat	nperatu alculat ctions ion of	ire – tion – firs rate	Kirchl of abs 9+: st orde consta	hoff's solute 3 er and nt for
thermo equation entropy UNIT Rate of pseudo the inv	ochemical data. on. Statement <u>ies of substance</u> II - CHEMIC of reactions – ra o unimolecular p version of cane s	Variation of enthalpy of a reaction w of Third Law of thermodynamics s. AL KINETICS ate constant – order and molecularity reactions (definition and examples) – sugar. Second order reactions – definition	of readerivation – e	nperatu alculat ctions ion of xample	ire – tion – firs rate es – d	Kirchl of abs 9+: st orde consta erivat	hoff's solute 3 er and nt for ion of
thermo equation entropy UNIT Rate of pseudo the inverse rate co	ochemical data. on. Statement ies of substance II - CHEMIC of reactions – ra o unimolecular version of cane so onstant (same	Variation of enthalpy of a reaction w of Third Law of thermodynamics s. AL KINETICS the constant – order and molecularity reactions (definition and examples) – sugar. Second order reactions – definition concentration and different concentre	of readerivation – e	nperatu alculat ctions ion of xample	ire – tion – firs rate es – d	Kirchl of abs 9+: st orde consta erivat	hoff's solute 3 er and nt for ion of
thermo equation entrop UNIT Rate of pseudo the inv rate co applica	ochemical data. on. Statement <u>ies of substance</u> II - CHEMIC of reactions – ra o unimolecular version of cane so onstant (same ation to saponifi	Variation of enthalpy of a reaction w of Third Law of thermodynamics s. AL KINETICS the constant – order and molecularity reactions (definition and examples) – sugar. Second order reactions – definiti concentration and different concentr cation of ester.	of readerivation – e	ctions ion of and h	ire – tion – firs rate – tes – d alf lit	Kirchl of abs 9+. t orde consta erivati fe per	solute 3 er and nt for ion of iod –
thermo equation entropy UNIT Rate of pseudo the inv rate co applica Third	ochemical data. on. Statement ies of substance II - CHEMIC of reactions – ra o unimolecular r version of cane s onstant (same ation to saponifi order reactions	Variation of enthalpy of a reaction w of Third Law of thermodynamics s. AL KINETICS the constant – order and molecularity reactions (definition and examples) – sugar. Second order reactions – definition concentration and different concentration cation of ester. : definition and examples. Methods	ith ten and c of rea derivat ion – e ation) of det	ctions ion of and ha	tion $-$ firs rate $-$ dalf lit	Kirchl of abs 9+3 st orde consta erivati fe per of orc	3 er and nt for ion of iod – ler of
thermo equation entropy UNIT Rate of pseudo the inverse applica Third reaction	ochemical data. on. Statement ies of substance II - CHEMICA of reactions – ra o unimolecular p version of cane s onstant (same ation to saponifi order reactions ons.Zero order p	Variation of enthalpy of a reaction w of Third Law of thermodynamics s. AL KINETICS the constant – order and molecularity reactions (definition and examples) – sugar. Second order reactions – definition concentration and different concentration cation of ester. : definition and examples. Methods reactions – definition and examples	ith ten and c of rea derivation – e ation) of det – deriv	ctions ion of and had ermina	$\frac{1}{1}$	Kirchl of abs 9+. st orde consta erivati fe per of ord te con	3 er and nt for ion of iod – ler of ustant.
thermo equation entropp UNIT Rate of pseudo the inverse applica Third reaction Theory	ochemical data. on. Statement <u>ies of substance</u> II - CHEMIC of reactions – ra o unimolecular p version of cane s onstant (same ation to saponifi order reactions ons.Zero order p y of reaction r	Variation of enthalpy of a reaction w of Third Law of thermodynamics s. AL KINETICS the constant – order and molecularity reactions (definition and examples) – sugar. Second order reactions – definition concentration and different concentration cation of ester. : definition and examples. Methods	of rea derivation – e ation) of det – deriv	ctions ion of xample and ha ermina vation	$\frac{1}{1}$	Kirchl of abs 9+. st orde consta erivati fe per of ord te con	3 er and nt for ion of iod – ler of ustant.
thermo equation entropy UNIT Rate of pseudo the inv rate co applica Third reaction Theory reaction	ochemical data. on. Statement <u>ies of substance</u> II - CHEMIC of reactions – ra o unimolecular p version of cane s onstant (same ation to saponifi order reactions ons.Zero order p y of reaction r	Variation of enthalpy of a reaction w of Third Law of thermodynamics s. AL KINETICS the constant – order and molecularity reactions (definition and examples) – sugar. Second order reactions – definition concentration and different concentration concentration and examples. Methods reactions – definition and examples the collision theory of bimolecularity reactions – theory of absolute reactions	of rea derivation – e ation) of det – deriv	ctions ion of xample and ha ermina vation	$\frac{1}{1}$	Kirchl of abs 9+. st orde consta erivati fe per of ord te con	and for solute solute solute solute solute solute and nt for ion of ion of iod – ler of ustant. ecular
thermo equation entropy UNIT Rate of pseudo the inverse rate co applica Third reaction Theory reaction UNIT	ochemical data. on. Statement ies of substance II - CHEMIC of reactions – ra o unimolecular p version of cane s onstant (same ation to saponifi order reactions ons.Zero order r y of reaction r ons – Lindemann III - SOLUTIO	Variation of enthalpy of a reaction w of Third Law of thermodynamics s. AL KINETICS the constant – order and molecularity reactions (definition and examples) – sugar. Second order reactions – definition concentration and different concentre cation of ester. : definition and examples. Methods reactions – definition and examples reates – collision theory of bimolecu n's hypothesis – theory of absolute reaction DNS	of rea derivation – e ation) of det – deriv lar rea ction ra	ctions ion of and had ermina vation actions ates.	$\frac{1}{1}$	Kirchl of abs 9+. st orde consta erivati fe per of ord te con nimole 8 +	hoff's solute 3 er and nt for ion of iod – ler of istant. ecular -3
thermo equation entropy UNIT Rate of pseudo the inverse rate co applica Third reaction Theory reaction UNIT Therm	ochemical data. on. Statement ies of substance II - CHEMIC of reactions – ra o unimolecular by version of cane so onstant (same ation to saponifi order reactions ons.Zero order by of reaction r ons – Lindemant III - SOLUTIC nodynamics of i	Variation of enthalpy of a reaction w of Third Law of thermodynamics s. AL KINETICS the constant – order and molecularity reactions (definition and examples) – sugar. Second order reactions – definition concentration and different concentration concentration and examples. Methods reactions – definition and examples the collision theory of bimolecularity reactions – theory of absolute reactions	ith ten and c of rea derivat ion – e ation) of det – deriv lar rea ction ra	ctions ion of xample and have rmina vation actions ates.	$\frac{1}{1}$	Kirchl of abs 9+3 st orde consta erivati fe per of ord te con nimole 8 + ns fror	hoff's solute 3 er and nt for ion of iod – ler of istant. ecular -3
thermo equation entropy UNIT Rate of pseudo the inverse rate co applica Third reaction Theory reaction UNIT Therm Raoult	ochemical data. on. Statement ies of substance II - CHEMIC of reactions – ra o unimolecular version of cane s onstant (same ation to saponifi order reactions ons.Zero order ro ons – Lindemant III - SOLUTIO nodynamics of i t's law – non-ide	Variation of enthalpy of a reaction w of Third Law of thermodynamics s. AL KINETICS the constant – order and molecularity reactions (definition and examples) – sugar. Second order reactions – definition concentration and different concentration cation of ester. : definition and examples. Methods reactions – definition and examples rates – collision theory of bimolecu n's hypothesis – theory of absolute reaction DNS deal solutions: Ideal solutions and Rao	ith ten and c of rea derivat ion – e ation) of det – deriv lar rea ction ra ult's la ition a	ctions ion of xample and have rmina vation actions ates.	$\frac{1}{1}$	Kirchl of abs 9+ . st orde consta erivati fe per of orc te con nimole 8 + ns fror ure,	hoff's solute 3 er and nt for ion of iod – ler of istant. ecular 3 n
thermo equation entropy UNIT Rate of pseudo the inverse rate co applica Third reaction Theory reaction UNIT Raoult compo	ochemical data. on. Statement ies of substance II - CHEMICA of reactions – ra- o unimolecular ra- version of cane so onstant (same ation to saponifi order reactions ons.Zero order ra- to sins – Lindemann III - SOLUTICA nodynamics of i t's law – non-ide osition curves of	Variation of enthalpy of a reaction w of Third Law of thermodynamics s. AL KINETICS the constant – order and molecularity reactions (definition and examples) – sugar. Second order reactions – definition concentration and different concentration concentration and examples. Methods reactions – definition and examples tates – collision theory of bimolecu on's hypothesis – theory of absolute reactions and solutions: Ideal solutions and Rao eal solutions. Vapour pressure-compose	of rea derivation – e ation) of det – deriv lar rea ction ra ult's la ition at	ctions ion of xample and have and have	$\frac{1}{1}$	Kirchl of abs 9+: t orde consta erivat: fe per of ord te con nimole 8 + ns fror ure, ever r	hoff's solute 3 er and nt for ion of iod – ler of ustant. ecular 3 n ule.
thermo equation entropy UNIT Rate of pseudo the inverse applica Third reaction Theory reaction UNIT Therm Raoult compon Azeotr on par	behemical data. on. Statement ies of substance II - CHEMIC of reactions – rational difference of reactions – rational difference of reactions – rational difference onstant (same ation to saponific order reactions ons.Zero order rations ons.Zero order ration of reaction r ons – Lindemann III - SOLUTIO nodynamics of it to slaw – non-ide osition curves of roopes. Partial mitical miscibility of	Variation of enthalpy of a reaction w of Third Law of thermodynamics s. AL KINETICS the constant – order and molecularity reactions (definition and examples) – sugar. Second order reactions – definition concentration and different concentration concentration and examples. Methods reactions – definition and examples the collision theory of bimolecularity ates – collision theory of bimolecularity deal solutions: Ideal solutions and Rao eal solutions. Vapour pressure-compos ideal and non-ideal solutions. Distillat ascibility of liquids: Critical solution te of liquids. Immiscibility of liquids- Print	of readerivation – eation) of det ation) of det – derivation lar readerivation lar r	alculat ctions ion of xample and have ermination actions ates.	ire – tion – firs rate – es – d alf li tion of ra – u viation perations. L ffect of	Kirchl of abs of abs torde consta erivation fe per of ord te com nimole 8 + ms fror ure, ever r of impu	hoff's solute 3 er and nt for ion of ion of iod – ler of astant. ecular - - - - - - - - - - - - -
thermo equation entropy UNIT Rate of pseudo the inverse applica Third reaction Theory reaction UNIT Therm Raoult compon Azeotr on part	behemical data. on. Statement ies of substance II - CHEMIC of reactions – rational difference of reactions – rational difference of reactions – rational difference onstant (same ation to saponific order reactions ons.Zero order rations ons.Zero order ration of reaction r ons – Lindemann III - SOLUTIO nodynamics of it to slaw – non-ide osition curves of roopes. Partial mitical miscibility of	Variation of enthalpy of a reaction w of Third Law of thermodynamics s. AL KINETICS The constant – order and molecularity reactions (definition and examples) – sugar. Second order reactions – definition concentration and different concentre cation of ester. : definition and examples. Methods reactions – definition and examples ates – collision theory of bimolecu n's hypothesis – theory of absolute reactions DNS deal solutions: Ideal solutions and Rao eal solutions. Vapour pressure-compos ideal and non-ideal solutions. Distillat ascibility of liquids: Critical solution te	of readerivation – eation) of det ation) of det – derivation lar readerivation lar r	alculat ctions ion of xample and have ermination actions ates.	ire – tion – firs rate – es – d alf li tion of ra – u viation perations. L ffect of	Kirchl of abs of abs torde consta erivation fe per of ord te com nimole 8 + ms fror ure, ever r of impu	hoff's solute 3 er and nt for ion of iod – ler of istant. ecular - - - - - - - - - - - - -
thermo equation entropy UNIT Rate of pseudo the inverse rate co applica Third reaction Theory reaction UNIT Therm Raoult compo Azeotr on part	ochemical data. on. Statement ies of substance II - CHEMIC of reactions – ra- o unimolecular ra- version of cane so onstant (same ation to saponifi order reactions ons.Zero order ra- tions – Lindemann III - SOLUTIC nodynamics of i t's law – non-ide position curves of ropes. Partial mi- tial miscibility of t distribution law	Variation of enthalpy of a reaction w of Third Law of thermodynamics s. AL KINETICS the constant – order and molecularity reactions (definition and examples) – sugar. Second order reactions – definition concentration and different concentration concentration and examples. Methods reactions – definition and examples the collision theory of bimolecularity ates – collision theory of bimolecularity deal solutions: Ideal solutions and Rao eal solutions. Vapour pressure-compos ideal and non-ideal solutions. Distillat ascibility of liquids: Critical solution te of liquids. Immiscibility of liquids- Print	of rea derivation – e ation) of det – deriv lar rea ction ra ition at ition at ition of mperation nciple on.	and hard and temperatures are solution and temperatures are solution and temperatures are solution are sol	ire – tion – firs rate – es – d alf li tion of ra – u viation perations. L ffect of	Kirchl of abs of abs torde consta erivation fe per of ord te com nimole 8 + ms fror ure, ever r of impu	hoff's solute 3 er and nt for ion of ion of iod – der of der of stant. ecular 3 n ule. urity on.
thermo equation entropy UNIT Rate of pseudo the inverse rate co applica Third reaction Theory reaction UNIT Therm Raoult compo Azeotr on part Nernst UNIT Ionic	ochemical data. on. Statement ies of substance II - CHEMIC of reactions – ra o unimolecular of version of cane so onstant (same ation to saponifi order reactions ons.Zero order of y of reaction r ons – Lindemant III - SOLUTIO nodynamics of i ti's law – non-ide osition curves of ropes. Partial mi tial miscibility of t distribution law IV - IONIC EO Equilibria: Strop	Variation of enthalpy of a reaction w of Third Law of thermodynamics s. AL KINETICS the constant – order and molecularity reactions (definition and examples) – sugar. Second order reactions – definition concentration and different concentre cation of ester. : definition and examples. Methods reactions – definition and examples rates – collision theory of bimolecu n's hypothesis – theory of absolute reactions deal solutions: Ideal solutions and Rao cal solutions. Vapour pressure-compose ideal and non-ideal solutions. Distillate iscibility of liquids: Critical solution te of liquids. Immiscibility of liquids- Printy and its applications, solvent extraction QUILIBRIUM AND PHASE EQUID ng, moderate and weak electrolytes, de	of rea derivation – e ation) of det – deriv lar rea ction ra ult's la ition at ition at ition of mperation n. JIBRII gree of	and harder and harder	re – firs - firs rate – es – d alf li tion of ra – u viation peration fect com m dis ation,	Kirchl of abs of abs 9+3 st orde consta erivati fe per of orce te com nimole 8 + ns fror ure, ever r of imput tillatic 9 +3 factor	hoff's solute 3 er and nt for ion of ion of iod – ler of istant. ecular 3 n ule. urity on. 3 's
thermo equation entropy UNIT Rate of pseudo the inverse applica Third reaction Theory reaction UNIT Therm Raoult compose Azeotr on part Nernst UNIT Ionic affection	ochemical data. on. Statement ies of substance II - CHEMIC of reactions – ra- o unimolecular ra- version of cane so onstant (same ation to saponifi order reactions ons.Zero order ra- tions – Lindemant III - SOLUTIO nodynamics of i t's law – non-ide position curves of ropes. Partial mi- tial miscibility of t distribution law IV - IONIC EO Equilibria: Stron- ng degree of ior	Variation of enthalpy of a reaction w of Third Law of thermodynamics s. AL KINETICS the constant – order and molecularity reactions (definition and examples) – sugar. Second order reactions – definition concentration and different concentration concentration and examples. Methods reactions – definition and examples the collision theory of bimolecularity ates – collision theory of bimolecularity ates – collision theory of bimolecularity deal solutions: Ideal solutions and Rao eal solutions. Vapour pressure-compose ideal and non-ideal solutions. Distillat discibility of liquids: Critical solution te of liquids. Immiscibility of liquids- Printy and its applications, solvent extraction QUILIBRIUM AND PHASE EQUIL	ith ten and c of rea derivation – e ation) of det – deriv lar rea ction ra ction ra ition at ition at ition at ition of mperation IBRIU gree of produc	and har and ha	ire – ion – ion – ion – afris rate – as – d alf lin of ra of ra of ra of ra peration perations. L fect c m dis	Kirchl of abs of abs 9+: torde consta erivat: fe per of ord te con nimole 8 + ns fror ure, ever r of imputillatio 9 +: factor onizati	hoff's solute 3 Fr and nt for ion of iod – ler of destant. ecular 3 n ule. urity on. 3 ion of ion of i

hydrolysis-calculation of hydrolysis constant, degree of hydrolysis and pH for different salts. Buffer solutions.

Phase Equilibrium Phases, components and degrees of freedom of a system, criteria of phase equilibrium. Gibbs Phase Rule and its thermodynamic derivation. Derivation of Clausius – Clapeyron equation and its importance in phase equilibria. Phase diagrams of one-component systems (water and sulphur) and two component systems involving eutectics, congruent and incongruent melting points (lead-silver only).

UNIT V - ELECTROCHEMISTRY AND CONDUCTANCE	9+3
Reversible and irreversible cells. Concept of EMF of a cell. Measurement of 1	EMF of a
cell. Nernst equation and its importance. Types of electrodes. Standard electrode	potential.
Electrochemical series. Thermodynamics of a reversible cell, calcul	lation of
thermodynamic properties: ΔG , ΔH and ΔS from EMF data. Calculation of ec	quilibrium
constant from EMF data. Concentration cells with transference and	without
transference. Liquid junction potential and salt bridge. Potentiometric titrat	tions
	• . •

Conductance Conductivity, equivalent and molar conductivity and their variation with dilution for weak and strong electrolytes. Kohlrausch law of independent migration of ions. Ionic mobility. Applications of conductance measurements: determination of degree of ionization of weak electrolyte. Conductometric titrations (only acid base).

	LECTURE	TUTORIAL	PRACTICAL	SELF STUDY	TOTAL
HOURS	45	15	0	0	60

TEXT BOOKS

1. "Principles of Physical Chemistry", B.R.Puri and L.R.Sharma

- 2. "Principles of Physical Chemistry", B.R.Puri, L.R.Sharma and M.S.Pathania
- 3. "Physical Chemistry", N.Kundu and SN.Jain

REFERENCES

- 1. "Textbook of Physical Chemistry", S.Glasstone
- 2. "Physical Chemistry", G.M.Barrow
- 3. "Advanced Physical Chemistry", P.W. Atkins
- 4. "Chemical Kinetics", K.J.Laidler
- 5. Glasstone S.,Lewis D.,Elements of Physical Chemistry, London,MacMillan & Co. Ltd
- 6. Barrow, G.M. Physical Chemistry Tata McGraw-Hill (2007).
- 7. Castellan, G.W. Physical Chemistry 4th Ed. Narosa (2004).
- 8. Kotz, J.C., Treichel, P.M. & Townsend, J.R. General Chemistry Cengage Learning India Pvt. Ltd., New Delhi (2009).
- 9. Mahan, B.H. University Chemistry 3rd Ed. Narosa (1998).
- 10. Petrucci, R.H. General Chemistry 5th Ed. Macmillan Publishing Co.: New York (1985).
- 11. Cotton, F.A. & Wilkinson, G. Basic Inorganic Chemistry, Wiley.
- 12. Shriver, D.F. & Atkins, P.W. Inorganic Chemistry, Oxford University Press.
- 13. Wulfsberg, G. Inorganic Chemistry, Viva Books Pvt. Ltd.

COURSE		XCY404	L	Т	P	SS	C
CODE							_
COURSE		INORGANIC CHEMISTRY	3	1	0	0	4
NAME		III					
C:P:A		3.6:0:0.4	L	T P		SS	Н
			3	1	0	0	4
COURSE	OUTC	OMES	DOM	AIN	LEV	EL	
	<i>entify</i> omerism	the stability of complexes and its	Cogni	tive	Unde	erstand	ling
CO2 De	escribe	the various bonding and theroies of	Cogni	tive	Unde	erstand	ling
me	etal and	ligands.	Affect	ive	Rece	iving	
		concept of stability in metal	Cogni	tive	Appl	у	
		and understand the principle of	Affect	ive	Rece	iving	
		metric titrations.					
		ne role of alkali, alkaline earth and	Cogni		Unde	erstand	ling
		metals in bio inorganic chemistry.	Affect				
		the properties and applications of	Cogni	tive	Appl		
		and zeolites.			Rem	ember	
		RDINATION CHEMISTRY tion of ligands,IUPAC nomenclature				9+3	
isomerism number 4 a Stability of	and con ind 6 co f compl	etric isomerism in coordination numl ditions for optical isomerism, optical mpounds. exes – definition of labile and inert exes. Postulates- sp ³ , dsp ² & sp ³ d ² h	l isomer t compl	rism in exes –	coord	inatio	n ecting
UNIT II		DRIES OF METAL – LIGAND BO PLEXES	NDIN(G IN		10	+3
CONPLEXESWerner's coordination theory, limitations of Werner's theory.Valence bond theory (VBT) – formation of inner and outer orbital complexes of Cr,Fe, Co, Ni and Cu (coordination numbers 4 and 6). – application of VBT to octahedralcomplexes, square planar and tetrahedral complexes, limitations of VBT.crystal field theory (CFT) – crystal field splitting in tetrahedral, square planar andoctahedral complexes, strong and weak ligands, spectrochemical series – high – spinand low – spin complexes, magnetic properties of octahedral and tetrahedralcomplexes, crystal field stabilization energy (CFSE) and its uses Comparison of CFSEfor Oh and Td complexes, limitations of CFT - comparison of VBT and CFT. Ligandfield theory – application of LFT to octahedral and tetrahedral complexes – metalligand π – bonding. Tetragonal distortion of octahedral geometry. Jahn-Tellerdistortion, Square planar coordination.UNIT IIIMETAL CARBONYLS, COMPLEXOMETRIC8+3							
complexes, for Oh and field theor ligand π distortion,	y – app – bond Square	pplexes, limitations of CFT - compa- plication of LFT to octahedral and ing. Tetragonal distortion of octa- planar coordination.	arison o tetraheo ahedral	f VBT dral co geom	and C	FT. L es – Jahn-'	igand metal Feller
complexes, for Oh and field theor ligand π distortion,	y – app – bond Square META	pplexes, limitations of CFT - compa- plication of LFT to octahedral and ing. Tetragonal distortion of octa- planar coordination.	arison o tetraheo ahedral IETRI	f VBT dral co geom	and C	FT. L es – Jahn-'	igand metal Feller

EAN rule – stability of metal carbonyls – applications.

Chelates – application of chelates.

Applications of co- ordination compounds in qualitative and quantitative analysis:

Separation of silver and mercury ions, copper and cadmium ions, identification of aluminium, chromium, nickel, zinc, manganese and potassium, Complexometric titrations – principle and applications – quantitative estimation of nickel using DMG, aluminium using oxine – structure of EDTA complexes.

Cluster compounds: Boranes – carbaboranes – carbonyl clusters.

BIO – INORGANIC CHEMISTRY	9+3

tiality (significance) of metal and metal ions in biological systems. Role of alkaline and alkaline earth metal ions in biological systems.Na/K pump.

Role of iron in biological systems – structure of haemoglobin (structural elucidation not required) – oxygen transportation by haemoglobin (elementary study) Structure of chlorophyll – photosynthesis. Role of zinc in biological systems. Role of Ca^{2+} in blood clotting, stabilization of protein structures and structural role (bones). Hydrogenase- Metal poisoning – cadmium and mercury poisoning.

UNIT V SILICONES (POLYSILOXANES) AND SILICATES 9+3

Types of silicones – structure of silicones – versatile properties of silicones.Preparation and properties of dimethyl, methylphenyl and diphenyl siliconesanes.

Applications of silicones – desired properties – sealants and adhesives – rubber – paints and coatings – health care – Automotive – aerospace – household – defoaming drycleaning electronics lubricants personalcare – construction.

Zeolites – types of zeolites - uses like ion- exchangers water softeners, molecular sieves dehydrating agents, adsorbents and catalysts.

	LECTUR	TUTORIA	PRACTICA	SELF STUDY	TOTAL
	Ε	\mathbf{L}	L		
HOURS	45	15	0	0	60
TEVT DO	OVC		•		

TEXT BOOKS

UNIT IV

1. "Inorganic Chemistry", P.L.Soni

2. "Advanced Inorganic Chemistry", R.D.Madan

3. "Inorganic Chemistry", Puri and Sharma

REFERENCES

1. "Basic Inorganic Chemistry", F.A. Cotton and Wilkinosn

2. "A Textbook of quantitative Inorganic Analysis", Arthur.I.Vogel

- 3. "Inorganic Chemistry", James E.Huheey
- 4. "Concise Inorganic Chemistry", J.D.Lee
- 5. "Fundamentals of Inorganic Chemistry", Gilreath
- 6. "Engineering Chemistry", B.C.Jain and Monica Jain
- 7. "In-organic Chemistry", Shriver and Atkins

COURS	SE CODE	XCY501	L	Т	P	SS	С
COURS	SE NAME	CLINICAL CHEMISTRY	1	0	2	1	2
			L	Т	P	SS	Η
			1	0	2	1	4
		IES: On the successful		DOM	AIN	LE	VEL
complet	tion of the cou	rse, students will be able to					
CO1		ne mechanism of different ypes of		Cognitive	e	Remei	nber
CO2		important concepts of various used in clinical chemistry.		Cognitive	e	Under	stand
CO3	· · · · · · · · · · · · · · · · · · ·	various molecular entities knowr 1 nutrition values.	n as	Cognitive	e	Analy	ze
CO4	_	e methods of testing of various or the diagnostic roles of related	gans	Cognitive	e	Under	stand
CO5		e various methods for cardiac pro cholesterol estimation.	ofile,	Cognitive	e	Analy	ze
SYLLA	ABUS:						
UNIT -	IMETABOL	ISM				3+3	
Distribu	ution of fluids	in the body, ECF & ICF, water	r meta	bolism, de	e hvdra	ation. n	ninera
		trients (principal mineral elemer					
		netabolism, Lipid metabolism, Bi					5
		UES USED IN CLINICAL CH				3+3	
		ion, laws of photometry, absor					
maxima	a, <mark>instrum</mark> en	ts, parts of photometer, ty	pes	of photo	metry-	-colori	metry
		flame photometry, fluoromet			appro	priate	filter
		ution, calculation of formula, aj	oplica	tions.			
UNIT –	- III VITAMI	NS AND NUTRITION				2+3	
manifes	stations of fat s	nins, Chemistry, properties, biolo oluble vitamins. Chemistry, prop ons and coenzyme functions of w	erties,	biological	impor		су
UNIT -	-IV ORGAN I	FUNCTION TESTS AND DIA	GNOS	TIC ENZ	YMES	S <u>5</u> +3	
manifes bilirubii	tations of rena n.	Evaluation of organ function tests l, pancreatic, gastric and intestina	al func	tions. Clin	ical in	nportan	
Enzym biliary		mination of myocardial infarction	n. Enz	ymes of pa	increat	ic origi	n and
UNIT –	-V APPLICA'	FIONS OF CLINICAL CHEM	ISTR	Y		2+3	
Enzyme	es in heart di	rief Hypertension, Angina, Myoo seases, Different methods of G advantage and disadvantage of di	lucos	e Estimati			

PRACTICALS		30hrs
Estimation of glucose using	Fehling's solution	
Estimation of cholesterol usi	ng	
ferric chloride Estimation of	ferric	
ion by colorimetric method		
Iodometric determination of		
vitamin C		
	n mixture by qualitative method.	
TEXT BOOKS		
	Biochemistry 4th Ed By David L. Nelson and Mich	ael
M.Cox,WH		
Freeman and Company.		
-	ry (Hardcover) By Geoffrey Zubay. Publisher: McG	Graw
HillCollege.		
	ange Medical Books) (Paperback) By Robert K. M	• •
	yes and Victor W. Rodwell. Publisher: Appelton ar	
	G. Nicholls and Stuart J. Ferguson. AcademicPress	
-	e: An Illustrated Introduction (At a Glance) By D.A	۱.
Harris.Publisher: WileyB	lackwell	
REFERENCE BOOKS		
1. Biochemistry By Lubert	-	
	ry By Robert Horton, Laurence A Moran, Gray Scr	imgeour,
Marc Perry and David Ra		
	y RK Murray, DK Granner, PA Mayes and VW	
Rodwell.Appeltonand La	nge,Stanford.	
LECTURE TUTORIAL	SELF-STUDY	
15	15	

	SE CODE	XCY503A		L	Т	P	С	
COUR	SE NAME	ANALYTICAL METHODS IN C	HEMISTRY	3	1 T	0	4	
						P	Η	
				3	1	0	4	
COUR	SE OUTCC	MES: On the successful	DOMAIN	DOMAIN LEV		LEVE		
complet	tion of the c	ourse, students will be able to						
CO1		e concepts of qualitative and	Cognitive		Rem	embe	r	
		e analysis and also to find out the						
		uracy and precision in data analysis.						
CO2	-	ne principles and methods of	Cognitive		Unde	erstan	d	
	analyzing	chemical compounds with the						
CO3	Analyse th	ne various types of thermal	Cognitive		Anal	yze		
	-	f analysis including TGA,	0					
	DTA, DS							
CO4		the importance of electroanalytical	Cognitive		Unde	erstan	d	
	-	s in analysis of different parameters	-					
	of chemic	al compounds and solutions						
CO5	Illustrate	the significance of separation	Cognitive		Anal	yze		
	-	s in visualizing trace elements and						
	comparing	g it with control samples.						
SYLLY	/BUS·							
					a z a			
		ATIVE AND QUANTITATIVE AS				5+3		
		on of analytical data, errors, accu						
express	ion, normal	law of distribution if indeterminate e	errors, statistical	test o	r data;	F , Q	and	
		· · · · · · · · · · · · · · · · · · ·						
test, rej	ection of dat	a, and confidence intervals.				15.	2	
test, rej UNIT-I Origin	ection of dat II OPT of spectra, i	ICAL METHODS OFANALYSIS interaction of radiation with matter	, fundamental	aws o	f spect	15+ trosco		
test, rejo UNIT-J Origin and selo UV-Vis monocl Infrare monocl Structu substitu Flame 2 (choice	ection of dat I OPT of spectra, i ection rules ible Spectro hromator and d Spectromator hromator & ural illustration. Atomic Abso of source, 1	ICAL METHODS OFANALYSIS interaction of radiation with matter ,validity of Beer-Lambert's law. <i>metry:</i> Basic principles of instrument ad detector) for single and double b <i>etry:</i> Basic principles of instrumenta a detector) for single and double beat to through interpretation of data, <i>porption and Emission Spectrometry:</i> nonochromator, detector, choice of	ntation (choice eam instrumen ation (choice of am instrument; Effect and imp Basic principles flame and Bur	of sou t; source sampl ortan s of ins ner de	rce, e, ling te ce of is strume signs.	trosco chniq sotop entat	ppy lues. e ion	
test, rejo UNIT-J Origin and selo UV-Vis monocl Infrare monocl Structu substitu Flame 2 (choice Technic	ection of dat I OPT of spectra, i ection rules <i>ible Spectro</i> hromator and <i>d Spectroma</i> hromator & ural illustration. Atomic Abso of source, 1 ques of ator	ICAL METHODS OFANALYSIS interaction of radiation with matter ,validity of Beer-Lambert's law. <i>metry:</i> Basic principles of instrument and detector) for single and double b <i>etry:</i> Basic principles of instrumenta a detector) for single and double beat to through interpretation of data, <i>prption and Emission Spectrometry:</i> nonochromator, detector, choice of nization and sample introduction; N	ntation (choice eam instrumen ation (choice of am instrument; Effect and imp Basic principles flame and Burn Viethod of back	of sou t; source sampl ortane s of ins ner de groun	rce, e, ling te ce of is strum signs. d corr	chniq sotop entat	ppy lues. e ion	
test, rej UNIT-1 Origin and sele UV-Vis monocl Infrare monocl Structu substitu Flame 2 (choice Technic sources	ection of dat I OPT of spectra, i ection rules ible Spectro hromator and d Spectrome hromator & ural illustration. Atomic Abso of source, 1 ques of atom s of chemica	ICAL METHODS OFANALYSIS interaction of radiation with matter ,validity of Beer-Lambert's law. <i>metry:</i> Basic principles of instrument ad detector) for single and double b <i>etry:</i> Basic principles of instrumenta a detector) for single and double beat to through interpretation of data, <i>porption and Emission Spectrometry:</i> nonochromator, detector, choice of	ntation (choice eam instrumen ation (choice of am instrument; Effect and imp Basic principles flame and Burn Method of back removal. Techn	of sou t; source sampl ortan ortan s of ins ner de groun niques	rce, e, ling te ce of is strum signs. d corr	chniq sotop entat	ppy (ues. e ion	

U	NIT – III THERMAL METHODS OF ANALYSIS	5+3
in	neory of thermogravimetry (TG), basic principle of instrumentation. Principles, strumentation and applications of TGA, DTA, DSC. Techniques for quantitativ	
es	timation of Ca and Mg from their mixture.	
	NIT –IV ELECTROANALYTICAL METHODS	5+3
	assification of electroanalytical methods, basic principle of pH metric, potentia	
	nductometric titrations. Techniques used for the determination of equivale echniques used for the determination of pKa values.	nce points.
	NIT –V SEPARATION TECHNIQUES	15+3
	lvent extraction: Classification, principle and efficiency of the technique. Mech	
ex	traction:	
	traction by solvation and chelation.Technique of extraction: batch, conti	
	unter current extractions. Qualitative and quantitative aspects of solvent	
	traction of metal ions from aqueous solution, extraction of organic specie	s from the
-	ueous and nonaqueous media. promatography: Classification, principle and efficiency of the techniq	
	echanism of separation: adsorption, partition & ion exchange. Paper, colur	
	in layer chromatography and HPLC	·····,
	EXTBOOKS	
1.	Jeffery, G.H., Bassett, J., Mendham, J. & Denney, R.C. Vogel's Textbook of	
	QuantitativeChemical	
2	Analysis, John Wiley & Sons, 1989.	
2.	Willard, H.H., Merritt, L.L., Dean, J. & Settoe, F.A. <i>Instrumental Methods of</i> <i>Analysis</i> , 7th Ed. Wadsworth Publishing Company Ltd., Belmont, California,	
	USA,1988.	
3.	Christian, G.D; Analytical Chemistry, 6th Ed. John Wiley & Sons, New York, 2004	L.
4.	Harris, D. C. <i>Exploring Chemical Analysis</i> , Ed. New York, W.H. Freeman, 2001.	
R	EFERENCE BOOKS	
1.	Khopkar, S.M. <i>Basic Concepts of Analytical Chemistry</i> . New Age, International Publisher, 2009.	
2.	Skoog, D.A. Holler F.J. & Nieman, T.A. Principles of Instrumental Analysis, Ceng	gage
	Learning India Ed.	
3.	Mikes, O. Laboratory Hand Book of Chromatographic & Allied Methods, Elles Ha	arwood
	Serieson	
	Analytical Chemistry, John Wiley & Sons, 1979.	
Е	Resources - MOOCs:	
1.	https://www.mooc-list.com/course/basic-analytical-chemistry-edx	
2.	https://www.mooc-list.com/course/analytical-chemistry-instrumental-analysis-course/analytical-chemistry-instrumental-analysis-course/analytical-chemistry-instrumental-analysis-course/analytical-chemistry-instrumental-analysis-course/analytical-chemistry-instrumental-analysis-course/analytical-chemistry-instrumental-analysis-course/analytical-chemistry-instrumental-analysis-course/analytical-chemistry-instrumental-analysis-course/analytical-chemistry-instrumental-analysis-course/analytical-chemistry-instrumental-analysis-course/analytical-chemistry-instrumental-analysis-course/analytical-chemistry-instrumental-analysis-course/analytical-chemistry-instrumental-analysis-course/analytical-chemistry-instrumental-analysis-course/analytical-chemistry-instrumental-analysis-course/analytical-chemistry-instrumental-analysis-course/analytical-chemistry-instrumental-analysis-course/analytical-chemistry-instrumental-chemistry	rsera
3.	https://www.mooc-list.com/course/analytical-chemistry-saylororg	

COU	RSE CODE	XCY602A	L	Т	P	SS	C
COURSE NAME		INDUSTRIAL CHEMISTRY	3	1	0	0	4
PREF	REQUISITE	NIL	L	Т	P	SS	Η
C:P:A						0 0	
	RSE OUTCO	MES: : On the successful completion of the be able to	DO	MAI	N	LEVI	EL
<u>CO1</u>			Cog	nitive	R	emem	ber
001	industry.		0081		-		001
CO2	2		Cogr	nitive	U	Inderst	and
CO3			Cogr	nitive	U	Inderst	and
<u>CO3</u> CO4		various toxic chemicals used in agro industries	Cog	nitive	P	emem	hor
007	and synthesis	e	Affe			eceive	
		0	-	nitive		nalyze	
CO5	industrial pol		Affe			espon	
UNI	T I RAW INDU		CHE	MICA	L		9+3
setting and fe colore Manu nitrate UNIT	nt: Manufact g of cement, g ldspar, glazin d glasses, lead facture of an e salts. F III SMAI	CNT, CERAMICS, GLASS AND FERTILIZERS ire – Wet Process and Dry process. Types, Anal einforced concrete. Cement industries in India. g and verification.Glass: Types, Composition, ma l glass and neutron absorbing glass. Fertilizers: Fe monia, ammonium salts, urea, superphosphate, L SCALE CHEMICAL INDUSTRIES	Čeran anufa ertiliz triplo	mics: cture zer ind e supe	Impo of Op dustri erphos	onstitu rtant otical ș es in I sphate	clay glas ndia e an 9+3
oils, fa fire w	nts and waxes orks: manufa	electrochemical industries: electroplating – sur – Textiles industry-soaps and detergents – cosme cture of some industrially important chemicals lik letal powders.	tics.	Matcl	ı indu	stries	and
UNI		R AND AGRO CHEMICAL					9+3
Sugar: in Indi of action	Cane sugar m a. Agrochemi	anufacture, recovery of sugar from molasses, sugar es cal industries: Important categories of insecticides, fu is of common pesticides like Gammexane, DDT, ala	ungici	des, l	nerbici	ndustr des. M	ies Iode
UNI	ΓV INDU	STRIAL POLLUTION & CHEMICAL TOXICO	LOG	Y			9+3
fertiliz	uction – caus ers andchemi	es of industrial pollution – thermal power plants cal industry – pulp and paper industries – agro nicals in the environment – biochemical effects	– ni base	iclear d ind	ustries	s – ce	eme

	CODE	XCY603B	L	Т	Р	SS	С	
COURSE	NAME	POLYMER CHEMISTRY	3	1	0	0	4	
PREREQU	UISITES	NIL	L	Т	Р	SS	Н	
C:P:A		3.4:0:0.6	3	1	0	0	4	
COURSE course, stu		IES: On the successful completion of the be able to	D	OMA	IN	LI	EVEL	
<u>CO1</u> SC, SIU		the chemistry of polymerization.	Cogr	itive		Understand		
CO2		the preparation of individual polymers	Cogr	itive		Und	erstan pond	
CO3	-	<i>t</i> their physical properties of polymers and he molecular weight and size of polymers.	Cogr			App	erstand ly pond	
CO4	the uses of	<i>e</i> the polymerization techniques and <i>Classify</i> of polymers.	Cogr	itive			lyze	
CO5	Summar	<i>ize</i> the processing of polymers	Cogr	itive			nember erstand	
UNIT I		FICATION OF POLYMERS AND CHEN ERISATION	IISTR	Y OF			10+3	
Chemistry ordination,	ring ope	ain hetero chain, homopolymers co-polymerization: Types of polymerization – me ening, metathetical, group transfer, polya	chanisı	n – (chain,	grow	th, co	
Chemistry ordination, polymeriza UNIT II Individual 1 the follow Polytetra -	ring ope tions. INDIVI Polymers: ing polym – fluoroet	nerization: Types of polymerization – me ening, metathetical, group transfer, polya DUAL POLYMERS Monomers required general methods of prep ners and resins, polystyrene, polyacrylonit hylene, polybutadienes and polychloropre	addition addition aration rile, pone, po	n – o n and , repea olyme lyeste	chain, poly at unit thyl, rs, po	grow conde s and u metha	th, co ensatio 10+3 uses of crylate	
Chemistry ordination, polymeriza UNIT II Individual I the follow Polytetra - polyimides urea – form	ring ope tions. INDIVI Polymers: ing polym - fluoroet , polyamic naldehyde,	nerization: Types of polymerization – me ening, metathetical, group transfer, polya DUAL POLYMERS Monomers required general methods of prep hers and resins, polystyrene, polyacrylonit hylene, polybutadienes and polychloropre des (Kevlar), polyurethanes, polyethylene, g melamine – formaldehyde and epoxy resins.	addition addition aration rile, pone, po	n – o n and , repea olyme lyeste	chain, poly at unit thyl, rs, po	grow conde s and u metha	10+3 uses of crylate oonates dehyde	
ordination, polymeriza UNIT II Individual I the follow Polytetra - polyimides urea – form UNIT III	ring ope tions. INDIVI Polymers: ing polym - fluoroet , polyamic naldehyde, PROPEI	nerization: Types of polymerization – me ening, metathetical, group transfer, polya DUAL POLYMERS Monomers required general methods of prep ners and resins, polystyrene, polyacrylonit hylene, polybutadienes and polychloropre des (Kevlar), polyurethanes, polyethylene, g	addition aration rile, po ne, po glycols,	n – o n and , repea olyme lyeste phen	chain, poly at unit thyl, rs, po ol – f	grow vconde s and u metha olycart	10+3 uses of crylate ponates dehyde	

UNIT IV POLYMERISATION TECHNIQUES DEGRADATION AND USES OF 8+3 POLYMERS

Polymerisation Techniques: Bulk, solution, suspension, emulsion, melt condensation and interfacial polycondensation polymerizations, Degradation: Types of degradation – thermal, mechanical, ultrasonic and photodegradation – photo stabilizers – oxidative degradation – antioxidants – hydrolytic degradation. Uses of polymers in electronics and biomedicine.

UNIT V POLYMER PROCESSING

7+3

Polymer processing: Plastics (thermo and thermosetting), elastomers, fibres, compounding, plasticizers, colorants, flame retardants. Compression and injection moudlings – film extrusion and calendaring – die casting and rotational casting – thermofoaming – reinforcing.

LECTURE	TUTORIAL	SELF STUDY	PRACTICAL	TOTAL
45	15	0	0	60
TOTAL DOOL	70			

TEXT BOOKS

- 1. Seymour, R.B. & Carraher, C.E. Polymer Chemistry: An Introduction, Inc. New York,(1981).
- 2. Odian, G. Principles of Polymerization, 4th Ed. Wiley,(2004).
- 3. Billmeyer, F.W. Textbook of Polymer Science, 2nd Ed. Wiley Interscience,(1971)..
- 4. Ghosh, P. Polymer Science & Technology, Tata McGraw-Hill Education,(1991).
- 5. Lenz, R.W. Organic Chemistry of Synthetic High Polymers, Interscience Publishers, New

York,

(1967).

REFERENCES

- 1. M.P.Stevens, *PolymerChemistry:AnIntroduction*, 3rdEdition, OxfordUniversityPress, (1991).
- 2. H.R. Allcock, F.W. Lampe & J.E. Mark, *Contemporary Polymer Chemistry*, 3rd edition, (2003).
- 3. F.W. Billmeyer, Textbook of Polymer Science, 3rd ed. Wiley-Interscience, (1984).
- 4. J.R. Fried, *Polymer Science and Technology*, 2nd ed. Prentice-Hall(2003)
- 5. P. Munk & T.M. Aminabhavi, *Introduction to Macromolecular Science*, 2nd ed. John Wiley & Sons(2002).
- 6. L. H. Sperling, *Introduction to Physical Polymer Science*, 4th ed. John Wiley & Sons (2005).
- 7. M.P. Stevens, *Polymer Chemistry: An Introduction* 3rd ed. Oxford University Press,(2005).
- 8. Seymour/ Carraher's Polymer Chemistry, 9th ed. by Charles E. Carraher, Jr.(2013).

M.Sc Chemistry

COURSE CODEYCY101COURSE NAMEORGANIC CHEMISTRY- IPREREQUISITENILC:P:A4.5: 0: 0.5	L 4 L	T 1	SS 1	P 0	C 5	
PREREQUISITE NIL	L		4 1 1			
		L T SS			_	
C:P:A 4.5: 0 : 0.5	L 1 55 4 1 1			P 0	H 6	
					Ŭ.	
COURSE OUTCOMES- On the successful completion of the	LE	VEL				
course, students will be able toCO1 <i>Recognize</i> the various basic concepts of aromaticity.Cognitive						
Recognize the various basic concepts of aromaticity.	Cogina	vC		Ke	member	
CO2 <i>Identify</i> the oxidation and reducing reagents for organic synthesis.	Cognitiv	ve		Un	derstand	
CO3 <i>Describe</i> and <i>give examples</i> of stereochemistry of organic compounds.	Cogniti	ve			member derstand	
CO4 <i>Recognize</i> the effect of light in organic reactions and <i>understand</i> the mechanism of photochemistry.	Cognitiv Affectiv		nd	and	derstand l ceiving	
CO5 <i>Recall</i> and <i>explain</i> the mechanism of pericyclic	Cognitiv	ve		-	member	
reactions.	coginti	ve			derstand	
UNIT I AROMATICITY					16	
Huckel's theory of aromaticity, concept of homoaromaticity and anti-aElectron occupancy in MO's and aromaticity – NMR concept of aromawith 2,4,8 and 10 electron s, systems of more than 10 electrons (annulproperties of systems with $(4n+2)\pi$ -electron s and $4n\pi$ -electrons, alter(azulene type) – aromaticity in heteroaromatic molecules, sydnones anUNIT II REAGENTS IN ORGANIC SYNTHESIS	aticity and lenes), Mo mant and d fullerer	d an obius non- nes.	s aroma -alterna	nticity nt hy	y. Bondin drocarbon	
Oxidation: Baeyer-Villiger, Jacobsen epoxidation, Shi epoxidation Cu(OAC) ₂ , Bi ₂ O ₃ , Swern oxidation, Sommelet reaction, Elbs react	ion, Oxic	lativ	e coup	ling	of phenols	
Prevost reaction and Woodward modification. Reduction: pallad						
based heterogeneous catalysts for hydrogenation, Wilkinson's catalyst, Noyori asymmetric hydrogenation – reductions using Li/Na/Ca in liquid ammonia. Hydride transfer reagents from group III and group IV in reductions. (i) triacetoxyborohydride, L-selectride, K-selectride, Luche reduction, Red-Al, NaBH4 and NaCNBH3, trialkylsilanes and trialkylstannane, (ii stereo/enantioselectivity reductions (Chiral Boranes, Corey-Bakshi-Shibata).						
UNIT III STEREOCHEMISTRY AND CONFORMATIONAL					19	
Stereoisomerism – symmetry – enantiomers and diastereomers – R at and chirality – types of molecules exhibiting optical activity – al molecules with non- carbon stereocenters (N, S and P) – molecules atropisomerism. Molecular chirality – allenes, spiranes, biphenyls, help	bsolute c with mo	onfigore the	guration nan one	n — e chir	chirality i al centre	

determining configuration – E and Z nomenclature – determination of configuration of geometrical isomerastereochemistry of addition and elimination reactions – stereospecific and stereoselective synthesis [elementary examples]. Basic concepts of conformational analysis – conformations of cyclopentane cyclohexane, cyclohexene and fused (decalin) and bridged (norbornane type) ring systems – anomeric effect in cyclic compounds.

18

18

UNIT IV ORGANIC PHOTOCHEMISTRY

Organic photochemistry – fundamental concepts – energy transfer – characteristics of photoreactions – photoreduction and photooxidation, photosensitization. Photoreactions of ketones and enones – Norrish Type I and II reactions – Paterno-Büchi reaction – photo-Fries rearrangement – photochemistry of alkenes dienes and aromatic compounds – di- π -methane rearrangement. Reactions of unactivated centres – photochemistry of α , β -unsaturated carbonyl compounds – photolytic cycloadditions and photolytic rearrangements – photo additions – Barton reaction

UNIT V PERICYCLIC REACTIONS

Concerted reactions – orbital symmetry and concerted symmetry – Woodward and Hoffmann rules - selection rules for electrocyclic reactions – frontier molecular orbital approach – correlation diagram - examples. Selection rules for cycloaddition reactions – frontier molecular orbital approach – correlation diagram – examples – chelotropic and ene reactions.Sigmatropic rearrangements – 1,3, 1,5 and 1,7 hydrogen shifts – examples – Cope and Claisen rearrangements – 1,3-dipolar cycloaddition reactions: type of dipoles, selectivity, scope and applications.

1 /		11				4
	LECTURE	TUTORIAL	PRACTICAL	SELF STUDY	TOTAL	
HOURS	60	15	-	15	90	
TEVT DO	OVC					

TEXT BOOKS

- 1. J. March and M. B. Smith, March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure; 7th Ed., Wiley, New York, 2013.
- 2. L. Finar, Organic Chemistry; Vol.II, 7th Ed., Pearson education Ltd, New Delhi, 2009.
- 3. R. T. Morrison and R. N. Boyd, Organic Chemistry, 7th Ed., Pearson, New Delhi, 2011.
- 4. F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry; Parts A and B, 5th Ed., Springer, Germany, 2007.
- 5. T. H. E. Lowry and K. S. Richardson, Mechanism and Theory in Organic Chemistry; Addison-Wesley, USA, 1998.
- 6. P. S. Kalsi, Stereochemistry; Wiley eastern limited; New Delhi, 1993.
- 7. D. Nasipuri, Stereochemistry of Organic Compounds Principles and Applications; 2nd Ed., New Age International, New Delhi, 1994.
- 8. E. L. Eliel, and S. H. Wilen, Stereochemistry of Organic Compounds; John Wiley, New York, 1994.
- 9. J. D. Coyle, Organic Photochemistry; Wiley, New York, 1998.
- 10. J. M. Coxon, and B. Halton, Organic Photochemistry; 2nd Ed., Cambridge, University Press, UK, 1987

REFERENCE BOOKS

- 1. R. K. Bansal, Organic Reaction Mechanisms; 11th Ed., Tata McGraw Hill, Noida, 2006.
- 2. R. K. Bansal, Organic Reaction Mechanisms; 11th Ed., Tata McGraw Hill, Noida, 2006.
- 3. J. Clayden, N. Greeves, S. Warren, and P. Wothers, Organic Chemistry; 1st Ed., Oxford University Press, UK, 2000.
- 4. G. R. Chatwal, Organic Phtochemistry; 1st Ed., Himalaya Publications house, Bangalore, 1998.
- **5.** S. Sankararaman, Pericyclic Reactions A Textbook: Reactions, Applications and Theory; Wiley-VCH, New York, 2005.

E RESOURCES

- 1. <u>http://nptel.ac.in/courses/104103071/21</u>
- 2. <u>https://www.youtube.com/watch?v=Ih7tQ7rY2Wc</u>
- 3. http://nptel.ac.in/courses/104101005/
- 4. <u>https://www.youtube.com/watch?v=12hmgzeiGo4</u>
- 5. <u>https://www.youtube.com/watch?v=WEeFhsjn-lo</u>

		COURSE NAME	L	Т	SS	Р	C
CODE							
YCY102		INORGANIC CHEMISTRY- I	4	1	1	0	5
PREREQUI E	ISIT	NIL	L T SS P			H	
C:P:A		4.5: 0 : 0.5	4 1 1 0			6	
		OMES- On the successful completion of the	DOM	IAIN		LEV	'EL
,		vill be able to					
CO1	Des	scribe the basic concepts of main group elements.	Cogn	itive		Rem	ember
CO2	-	<i>plain</i> the reactions of coordination compounds <i>estimate</i> the physical constants of the reactions.	Cogn	itive		Und	erstand
CO3	Sur	<i>nmarize</i> the theories and bonding nature of rdination compounds.	Cogn	itive		Und	erstand
CO4	Ide	<i>ntify</i> and <i>understand</i> the reaction mechanism of r and six coordinated compounds.	Cogn Affec	itive a tive:	ind	Und	erstand
CO5	Rev	<i>write</i> the basic concepts of photochemistry and its lications to coordinated compounds.	Cogn			Understand	
Chemistry of	f boro	GROUP CHEMISTRY n – borane, higher boranes, carboranes, borazines					•
Chemistry of silicon – sila cyclophosph compounds - and P_4S_{10} – Lande equat reaction deco	f boro nes, h azanes - S-N homo ion – ompos	n – borane, higher boranes, carboranes, borazines igher silanes, multiple bonded systems, disilanes, s and cyclophosphazenes – S-N compounds – S ₂ N cations and anions, S-P compounds – molecular s cyclic inorganic systems – oxocarbon anion. Ioni Kapustinskii equation – high Tc superconductors ition, solid-soild reaction and photographic proces	silicon N ₂ , S ₄ N sulphid Ic mod s – sol	n nitric I4, (SN les suc el – la id stat	les. P- I)x, po h as P ttice e e reac	N com olythia: 24S ₃ , P ₄ energy tions -	7 nistry o npounds zyl S _x N S ₇ , P4S – Born - tarnish ion rate.
Chemistry of silicon – sila cyclophosph compounds – and P_4S_{10} – Lande equat reaction decoUNITPIIIPI	f boro nes, h azane: - S-N homo ion – ompos RINC	n – borane, higher boranes, carboranes, borazines igher silanes, multiple bonded systems, disilanes, s and cyclophosphazenes – S-N compounds – S ₂ N cations and anions, S-P compounds – molecular s cyclic inorganic systems – oxocarbon anion. Ioni Kapustinskii equation – high Tc superconductors ition, solid-soild reaction and photographic proces IPLES OF COORDINATION CHEMISTRY	silicon N ₂ , S ₄ N sulphid c mod s – sol s – fac	n nitric I4, (SN les suc el – la id stat tors af	les. P- I)x, pc h as P ttice e e reac fecting	N complythia: ${}_{4}S_{3}$, P ₄ energy tions – g reactions	7 nistry o npounds zyl S _x N S ₇ , P ₄ S – Born - tarnish ion rate. 1 7
Chemistry of silicon – sila cyclophosph compounds – and P_4S_{10} – Lande equati reaction decoUNITPHIIStudies of co constants – s and photom	f boro ines, h azane: - S-N homo ion – ompos RINC pordina tepwia	n – borane, higher boranes, carboranes, borazines igher silanes, multiple bonded systems, disilanes, s and cyclophosphazenes – S-N compounds – S ₂ N cations and anions, S-P compounds – molecular s cyclic inorganic systems – oxocarbon anion. Ioni Kapustinskii equation – high Tc superconductors ition, solid-soild reaction and photographic proces IPLES OF COORDINATION CHEMISTRY ation compounds in solution – detection of comple se and overall formation constants. Simple method methods) of determining the formation constants	silicon N ₂ , S ₄ N sulphid c mod s – sol $\frac{1}{2}$ s – fac ex form ds (pot	n nitric I4, (SN les suc el – la id stati tors af ation i eention	les. P- I)x, po h as P ttice e e reac fecting n solu netric	N com olythia: 4S ₃ , P4 onergy tions - g reactive tion - , pH n	nistry o npounds zyl S _x N S ₇ , P4S – Born - tarnisl ion rate 1 7 stability netric
Chemistry of silicon – sila cyclophosph compounds – and P_4S_{10} – Lande equati reaction deco UNIT PH II Studies of co constants – s and photom statistical and	f boro nes, h azane: - S-N homo ion – ompos RINC ordina tepwia tepwia d chel	n – borane, higher boranes, carboranes, borazines igher silanes, multiple bonded systems, disilanes, s and cyclophosphazenes – S-N compounds – S ₂ N cations and anions, S-P compounds – molecular s cyclic inorganic systems – oxocarbon anion. Ioni Kapustinskii equation – high Tc superconductors ition, solid-soild reaction and photographic proces IPLES OF COORDINATION CHEMISTRY ation compounds in solution – detection of comple se and overall formation constants. Simple metho	silicon N ₂ , S ₄ N sulphid c mod s – sol $\frac{1}{2}$ s – fac ex form ds (pot	n nitric I4, (SN les suc el – la id stati tors af ation i eention	les. P- I)x, po h as P ttice e e reac fecting n solu netric	N com olythia: 4S ₃ , P4 onergy tions - g reactive tion - , pH n	nistry or npounds zyl S _x N S ₇ , P4S – Born - tarnish ion rate. 1 7 stability netric
Chemistry of silicon – sila cyclophosph compounds – and P_4S_{10} – Lande equati reaction deco UNIT PH II Studies of co constants – s and photom statistical and	f boro nes, h azane: - S-N homo ion – ompos RINC ordina tepwia tepwia d chel	n – borane, higher boranes, carboranes, borazines igher silanes, multiple bonded systems, disilanes, s and cyclophosphazenes – S-N compounds – S ₂ N cations and anions, S-P compounds – molecular s cyclic inorganic systems – oxocarbon anion. Ioni Kapustinskii equation – high Tc superconductors ition, solid-soild reaction and photographic proces IPLES OF COORDINATION CHEMISTRY ation compounds in solution – detection of comple se and overall formation constants. Simple method methods) of determining the formation constant ate effects – forced configurations.	silicon N ₂ , S ₄ N sulphid c mod s – sol $\frac{1}{2}$ s – fac ex form ds (pot	n nitric I4, (SN les suc el – la id stati tors af ation i eention	les. P- I)x, po h as P ttice e e reac fecting n solu netric	N com olythia: 4S ₃ , P4 onergy tions - g reactive tion - , pH n	$ \begin{array}{r} 7 \\ \text{nistry o} \\ \text{npounds} \\ \text{zyl } S_x N_y \\ \text{S}_7, P_4 S \\ \text{- Born} \\ \text{- Born} \\ \text{- tarnisl} \\ \text{ion rate} \\ \text{ion rate} \\ \hline 1 \\ 7 \\ \text{stability} \\ \text{netric} \\ ty - \end{array} $

UNIT REACTION MECHANISM IN COORDINATION COMPLEXES

Kinetics and mechanism of reactions in solution – labile and inert complexes – ligand displacement reactions in octahedral and square planar complexes – acid hydrolysis, base hydrolysis and anation reactions. Trans effect – theory and applications – electron transfer reactions – electron exchange reactions – complementary and non-complementary types – inner sphere and outer sphere processes – application of electron transfer reactions in inorganic complexes – isomerisation and racemisation reactions of complexes. Molecular rearrangements of four- and six-coordinate complexes – interconversion of stereoisomers – reactions of coordinated ligands – template effect and its applications for the synthesis of macrocyclic ligands – unique properties.

UNIT V INORGANIC PHOTOCHEMISTRY

2 0

Electronic transitions in metal complexes, metal-centered and charge-transfer transitions – various photophysical and photochemical processes of coordination compounds. Unimolecular charge-transfer photochemistry of cobalt(III) complexes – mechanism of CTTM, photoreduction – ligand-field photochemistry of chromium(III) complexes – Adamson's rules, photoactive excited states, V-C model – photophysics and photochemistry of ruthenium – polypyridine complexes, emission and redox properties. Photochemistry of organometallic compounds – metal carbonyl compounds – compounds with metal-metal bonding – Reinecke's salt chemical actinometer.

	LECTURE	TUTORIAL	PRACTICAL	SELF STUDY	TOTAL
HOUR	60	15	-	15	90
S					

TEXT BOOKS

1.M. C. Day, J. Selbin and H. H. Sisler, Theoretical Inorganic Chemistry; Literary Licensing (LLC), Montana, 2012.

2.F. A. Cotton and G. Wilkinson, C. A. Murillo and M. Bochmann, Advanced Inorganic Chemistry; 6th Ed.,

A Wiley - Interscience Publications, John Wiley and Sons, USA, 1999.

3.J. E. Huheey, Inorganic Chemistry; 4th Ed., Harper and Row publisher, Singapore, 2006.

4.W. Adamson, Concept of Inorganic Photochemistry; John Wiley and Sons, New York, 1975.

5.S. F. A. Kettle, Physical Inorganic Chemistry – A Coordination Chemistry Approach, Spectrum;

Academic Publishers, Oxford University Press, New York, 1996.

REFERENCE BOOKS

1. A. W. Adamson and P. D. Fleischauer, Concepts of Inorganic Photochemistry; R. E. Krieger Pubs, Florida, 1984.

2. J. Ferraudi, Elements of Inorganic Photochemistry; Wiley, New York, 1988.

3. F. Basolo and R. G. Pearson, Mechanism of Inorganic Reactions; 2nd Ed., John Wiley, New York, 1967.

4. R. K. Sharma, Inorganic Reactions Mechanism; Discovery Publishing House, New Delhi, 2007. **E RESOURCES**

- 1. <u>https://www.youtube.com/watch?v=YChUH_XSZJ0</u>
- 2. <u>https://www.youtube.com/watch?v=7gNByyjaYrY</u>
- 3. <u>https://www.youtube.com/watch?v=Ox3pnVN47gw</u>
- 4. <u>https://www.youtube.com/watch?v=wq4XHcNBBgg</u>

1 8

COURSE	CODE	YCY103	L	Т	SS	P	C	
COURSE	NAME	PHYSICAL CHEMISTRY- I	4	1	1	0	5	
PREREQUISITE		NIL	L	Т	SS	Р	Н	
C:P:A 4.5: 0 : 1.5				1	1	0	6	
COURSE	DO	MAIN		LE	VEL			
course, st								
CO1		he basic concept of symmetry elements and the nding point groups of given molecules.	Cognitive Remember		member			
CO2		the theories of classical mechanics and quantum es of a microscopic particles and <i>predict</i> the energy rticles.	Cognitive Understand					
CO3		<i>e</i> the various theories of chemical kinetics of	Cognitive Rem			member		
CO4	-	the fundamentals of thermodynamic and <i>Label</i> the nermodynamic parameters.	0				derstand ceive	
CO5	Generali reactions	zed the photo physical properties of chemical			Un	derstand		
UNIT I	CONCE	PTS OF GROUP THEORY					18	
Symmetry	elements	and operations - point groups - assignment of pe	oint g	roups t	o mo	lecul	es – group	
		s of groups – group multiplication tables, sub gro						
conjugate elements and classes. Matrix representation of symmetry operations and point groups – reducible								
		esentations – properties of irreducible representation						
	-			-	-		-	
– construction of character table – direct product – projection operators – symmetry of hybrid UNIT II OUANTUM CHEMISTRY – I						iu oi	Untails.	
UNIT II	OUAN		2					
		TUM CHEMISTRY – I		concep	t – ph		19	
Inadequac	y of classi	TUM CHEMISTRY – I cal mechanics – black body radiation – Planck's qua	ntum			otoel	19 ectric	
Inadequac effect – Be	y of classi ohr's theor	TUM CHEMISTRY – I cal mechanics – black body radiation – Planck's qua y of hydrogen atom – hydrogen spectra – wave-parti	ntum	ualism -	- unce	otoel ertain	19 ectric ity	
Inadequac effect – Bo principle –	y of classi ohr's theor - decline o	TUM CHEMISTRY – I cal mechanics – black body radiation – Planck's qua y of hydrogen atom – hydrogen spectra – wave-parti f old quantum theory. Schrödinger equation – postul	ntum icle di ates o	ualism - f quanti	- unce um m	otoel ertain echa	19 ectric ity nics –	
Inadequac effect – Be principle – operator a	y of classi ohr's theor - decline o lgebra: lin	TUM CHEMISTRY – I cal mechanics – black body radiation – Planck's qua y of hydrogen atom – hydrogen spectra – wave-parti f old quantum theory. Schrödinger equation – postul ear operator, Hermitian operators, eigen functions an	ntum icle du ates o id eige	ualism - f quanti envalue	- unce um m s, ang	otoel ertain echa ular	19 ectric ity nics – momentum	
Inadequac effect – Bo principle – operator a operator –	y of classi ohr's theor - decline o lgebra: lin commuta	TUM CHEMISTRY – I cal mechanics – black body radiation – Planck's qua ry of hydrogen atom – hydrogen spectra – wave-parti f old quantum theory. Schrödinger equation – postul ear operator, Hermitian operators, eigen functions an tion relations and related theorems – orthogonality ar	ntum icle di ates o id eige id noi	ualism - f quantu envalue rmalizat	- unce um m s, ang ion. A	otoel ertain echa ular Appli	19 ectric ity nics – momentum cations of	
Inadequac effect – Bo principle – operator a operator – wave mec	y of classi ohr's theor - decline o lgebra: line commutat hanics to s	TUM CHEMISTRY – I cal mechanics – black body radiation – Planck's qua ry of hydrogen atom – hydrogen spectra – wave-parti f old quantum theory. Schrödinger equation – postul- ear operator, Hermitian operators, eigen functions an ion relations and related theorems – orthogonality ar imple systems – particle in a box, one and three dime	ntum icle di ates o id eige id noi	ualism - f quantu envalue rmalizat	- unce um m s, ang ion. A	otoel ertain echa ular Appli	19 ectric ity nics – momentum cations of	
effect – Bo principle – operator a operator – wave mech	y of classi ohr's theor - decline o lgebra: line commutat hanics to s parrier – th	TUM CHEMISTRY – I cal mechanics – black body radiation – Planck's qua ry of hydrogen atom – hydrogen spectra – wave-parti f old quantum theory. Schrödinger equation – postul ear operator, Hermitian operators, eigen functions an tion relations and related theorems – orthogonality ar	ntum icle di ates o id eige id noi	ualism - f quantu envalue rmalizat	- unce um m s, ang ion. A	otoel ertain echa ular Appli	19 ectric ity nics – momentum cations of	
Inadequac effect – Be principle – operator a operator – wave mec potential b UNIT III	y of classi ohr's theor - decline o lgebra: line commutat hanics to s parrier – th CHEM	TUM CHEMISTRY – I cal mechanics – black body radiation – Planck's qua y of hydrogen atom – hydrogen spectra – wave-parti f old quantum theory. Schrödinger equation – postul ear operator, Hermitian operators, eigen functions an tion relations and related theorems – orthogonality ar imple systems – particle in a box, one and three dime e quantum mechanical tunneling. ICAL KINETICS - I	ntum icle di ates o id eig id non ension	ualism - f quantu envalue rmalizat nal, part	- unce um m s, ang ion. A icle v	otoel ertain echa ular Appli vith f	19 lectric ity nics – momentum cations of inite 17	
Inadequac effect – Bo principle – operator a operator – wave mech potential b UNIT III Theories of	y of classi ohr's theor - decline o lgebra: line commutation hanics to s parrier – th CHEM	TUM CHEMISTRY – I cal mechanics – black body radiation – Planck's qua y of hydrogen atom – hydrogen spectra – wave-parti f old quantum theory. Schrödinger equation – postul ear operator, Hermitian operators, eigen functions an ion relations and related theorems – orthogonality ar imple systems – particle in a box, one and three dime e quantum mechanical tunneling. ICAL KINETICS - I rate – absolute reaction rate theory (ARRT) – transn	ntum icle di ates o id eigo nd noi ension	ualism - f quantu envalue rmalizat nal, part	- unce um m s, ang ion. <i>A</i> icle v	otoel ertain echa ular Appli vith f reac	19 lectric ity nics – momentum cations of inite 17 tion	
Inadequac effect – Bo principle – operator a operator – wave mech potential b UNIT III Theories of coordinate	y of classi ohr's theor - decline o lgebra: line commutat hanics to s parrier – th CHEM of reaction e – potentia	TUM CHEMISTRY – I cal mechanics – black body radiation – Planck's qua y of hydrogen atom – hydrogen spectra – wave-parti f old quantum theory. Schrödinger equation – postul- ear operator, Hermitian operators, eigen functions an ion relations and related theorems – orthogonality ar imple systems – particle in a box, one and three dime e quantum mechanical tunneling. ICAL KINETICS - I rate – absolute reaction rate theory (ARRT) – transm il energy surfaces – kinetic isotope effect – Hinshelw	ntum icle di ates o id eigend nd non ension nissio	ualism - f quantu envalue rmalizat nal, part n coeffi heory –	- unce um m s, ang ion. <i>A</i> icle v cient,	otoel ertain echa ular Appli vith f reac el, R	19ectricitynics –momentumcations ofinite17tionice and	
Inadequac effect – Be principle – operator a operator – wave mech potential b UNIT III Theories of coordinate Ramsperg	y of classi ohr's theor - decline o lgebra: line commutat hanics to s parrier – th CHEM of reaction e – potentia er theory (TUM CHEMISTRY – I cal mechanics – black body radiation – Planck's qua y of hydrogen atom – hydrogen spectra – wave-parti f old quantum theory. Schrödinger equation – postul ear operator, Hermitian operators, eigen functions an tion relations and related theorems – orthogonality ar imple systems – particle in a box, one and three dime e quantum mechanical tunneling. ICAL KINETICS - I rate – absolute reaction rate theory (ARRT) – transm al energy surfaces – kinetic isotope effect – Hinshelw KRRT) – Slater's treatment. Principle of microscop	ntum icle di ates o id eigend non ension nissio	ualism - f quanti envalue rmalizat hal, part n coeffi heory – ersibilit	- unce um m s, ang ion. A icle v cient, Kass y – st	otoel ertain echa ular Appli vith f reac el, R eady	19ectricitynics –momentumcations ofinite17tionice and-state	
Inadequac effect – Bo principle – operator a operator – wave mech potential b UNIT III Theories c coordinate Ramsperg approxima	y of classi ohr's theor - decline o lgebra: line commutation hanics to s parrier – th CHEM of reaction e – potentia er theory (ation – cha	TUM CHEMISTRY – I cal mechanics – black body radiation – Planck's qua y of hydrogen atom – hydrogen spectra – wave-parti f old quantum theory. Schrödinger equation – postul ear operator, Hermitian operators, eigen functions an ion relations and related theorems – orthogonality ar imple systems – particle in a box, one and three dime e quantum mechanical tunneling. ICAL KINETICS - I rate – absolute reaction rate theory (ARRT) – transm al energy surfaces – kinetic isotope effect – Hinshelw KRRT) – Slater's treatment. Principle of microscop in reactions: thermal and photochemical reactions b	ntum icle di ates o id eigend non ension nissio	ualism - f quanti envalue rmalizat hal, part n coeffi heory – ersibilit	- unce um m s, ang ion. A icle v cient, Kass y – st	otoel ertain echa ular Appli vith f reac el, R eady	19ectricitynics –momentumcations ofinite17tionice and-state	
Inadequac effect – Be principle – operator a operator – wave mech potential b UNIT III Theories c coordinate Ramsperg approxima explosions	y of classi ohr's theor - decline o lgebra: line commutat hanics to s parrier – th CHEM of reaction e – potentia er theory (ation – cha s and hydro	TUM CHEMISTRY – I cal mechanics – black body radiation – Planck's qua y of hydrogen atom – hydrogen spectra – wave-parti f old quantum theory. Schrödinger equation – postul- ear operator, Hermitian operators, eigen functions an ion relations and related theorems – orthogonality ar imple systems – particle in a box, one and three dime e quantum mechanical tunneling. ICAL KINETICS - I rate – absolute reaction rate theory (ARRT) – transm al energy surfaces – kinetic isotope effect – Hinshelw KRRT) – Slater's treatment. Principle of microscop in reactions: thermal and photochemical reactions bogen-oxygen reactions.	ntum icle di ates o id eigend non ension nissio	ualism - f quanti envalue rmalizat hal, part n coeffi heory – ersibilit	- unce um m s, ang ion. A icle v cient, Kass y – st	otoel ertain echa ular Appli vith f reac el, R eady	19 ectric ity nics – momentum cations of inite 17 tion ice and -state alogens –	
Inadequac effect – Be principle – operator a operator – wave mech potential b UNIT III Theories of coordinate Ramsperg approxima explosions UNIT IV	y of classi ohr's theor - decline o lgebra: line commutation hanics to s parrier – th CHEM of reaction e – potentiation er theory (ation – cha s and hydre STATIS	TUM CHEMISTRY – I cal mechanics – black body radiation – Planck's qua y of hydrogen atom – hydrogen spectra – wave-parti f old quantum theory. Schrödinger equation – postul ear operator, Hermitian operators, eigen functions an ion relations and related theorems – orthogonality ar imple systems – particle in a box, one and three dime e quantum mechanical tunneling. ICAL KINETICS - I rate – absolute reaction rate theory (ARRT) – transmal energy surfaces – kinetic isotope effect – Hinshelw KRRT) – Slater's treatment. Principle of microscop in reactions: thermal and photochemical reactions bogen-oxygen reactions. STICAL THERMODYNAMICS	ntum acle di ates o id eig nd non ension nissio vood t ic rev etwee	ualism - f quanti envalue rmalizat nal, part n coeffi heory – ersibilit	- unce um m s, ang ion. <i>A</i> icle v cient, Kass y – st ogen a	otoel ertain echa ular Appli vith f reac el, R eady nd h	 19 ectric ity momentum cations of inite 17 tion ice and -state alogens – 18 	
Inadequac effect – Bo principle – operator a operator – wave mec potential b UNIT III Theories of coordinate Ramsperg approxima explosions UNIT IV Thermody	y of classi ohr's theory - decline o lgebra: line commutation hanics to s parrier – th CHEM of reaction e – potentia er theory (ation – cha s and hydro STATIS ynamic pr	TUM CHEMISTRY – I cal mechanics – black body radiation – Planck's qua y of hydrogen atom – hydrogen spectra – wave-parti f old quantum theory. Schrödinger equation – postul ear operator, Hermitian operators, eigen functions an ion relations and related theorems – orthogonality ar imple systems – particle in a box, one and three dime e quantum mechanical tunneling. ICAL KINETICS - I rate – absolute reaction rate theory (ARRT) – transm al energy surfaces – kinetic isotope effect – Hinshelw KRRT) – Slater's treatment. Principle of microscop in reactions: thermal and photochemical reactions be open-oxygen reactions. STICAL THERMODYNAMICS obability – probability theorems – relation be	ntum acle du ates o d eigend non ension nissio vood t ic rev etwee	ualism - f quantu envalue malizat nal, part n coeffi heory – ersibilit n hydro	- unce um m s, ang ion. A icle v cient, Cient, Kass y – st ogen a	otoel ertain echa ular Appli vith f reac el, R eady nd h	 19 ectric ity nics – momentum cations of inite 17 tion ice and state alogens – 18 probability 	
Inadequac effect – Bo principle – operator a operator – wave mecl potential b UNIT III Theories of coordinate Ramsperg approxima explosions UNIT IV Thermody (Boltzman	y of classi ohr's theor - decline o lgebra: line commutat hanics to s parrier – th CHEM of reaction e – potentia er theory (ation – cha s and hydre STATIS mamic pr m-Planck	TUM CHEMISTRY – I cal mechanics – black body radiation – Planck's qua y of hydrogen atom – hydrogen spectra – wave-parti f old quantum theory. Schrödinger equation – postul ear operator, Hermitian operators, eigen functions an ion relations and related theorems – orthogonality ar imple systems – particle in a box, one and three dime e quantum mechanical tunneling. ICAL KINETICS - I rate – absolute reaction rate theory (ARRT) – transmal energy surfaces – kinetic isotope effect – Hinshelw KRRT) – Slater's treatment. Principle of microscop in reactions: thermal and photochemical reactions bogen-oxygen reactions. STICAL THERMODYNAMICS obability – probability theorems – relation be equation), ensembles, phase space, Ergodic hypoth	ntum icle di ates o id eigend non ension nissio vood t ic rev etwee etwee esis,	n entro n entro n entro	- unce um m s, ang ion. A icle v cient, Kass y – st ogen a	otoel ertain echa: ular Appli vith f reac el, R eady nd h and nd n	 19 ectric ity mics – momentum cations of inite 17 tion ice and state alogens – 18 probability nacrostates, 	
Inadequac effect – Bo principle – operator a operator – wave mecl potential b UNIT III Theories of coordinate Ramsperg approxima explosions UNIT IV Thermody (Boltzman	y of classi ohr's theor - decline o lgebra: line commutat hanics to s parrier – th CHEM of reaction e – potentia er theory (ation – cha s and hydre STATIS mamic pr m-Planck	TUM CHEMISTRY – I cal mechanics – black body radiation – Planck's qua y of hydrogen atom – hydrogen spectra – wave-parti f old quantum theory. Schrödinger equation – postul ear operator, Hermitian operators, eigen functions an ion relations and related theorems – orthogonality ar imple systems – particle in a box, one and three dime e quantum mechanical tunneling. ICAL KINETICS - I rate – absolute reaction rate theory (ARRT) – transm al energy surfaces – kinetic isotope effect – Hinshelw KRRT) – Slater's treatment. Principle of microscop in reactions: thermal and photochemical reactions be open-oxygen reactions. STICAL THERMODYNAMICS obability – probability theorems – relation be	ntum icle di ates o id eigend non ension nissio vood t ic rev etwee etwee esis,	n entro n entro n entro	- unce um m s, ang ion. A icle v cient, Kass y – st ogen a	otoel ertain echa: ular Appli vith f reac el, R eady nd h and nd n	 19 ectric ity momentum cations of inite 17 tion ice and state alogens – 18 probability nacrostates 	
Inadequac effect – Bo principle – operator a operator – wave mech potential b UNIT III Theories of coordinate Ramsperg approxima explosions UNIT IV Thermody (Boltzman Maxwell-I	y of classi ohr's theor - decline o lgebra: line commutat hanics to s parrier – th CHEM of reaction e – potentia er theory (ation – cha s and hydre STATIS mamic pr m-Planck	TUM CHEMISTRY – I cal mechanics – black body radiation – Planck's qua y of hydrogen atom – hydrogen spectra – wave-parti f old quantum theory. Schrödinger equation – postul ear operator, Hermitian operators, eigen functions an ion relations and related theorems – orthogonality ar imple systems – particle in a box, one and three dime e quantum mechanical tunneling. ICAL KINETICS - I rate – absolute reaction rate theory (ARRT) – transmal energy surfaces – kinetic isotope effect – Hinshelw KRRT) – Slater's treatment. Principle of microscop in reactions: thermal and photochemical reactions bogen-oxygen reactions. STICAL THERMODYNAMICS obability – probability theorems – relation be equation), ensembles, phase space, Ergodic hypoth	ntum acle di ates o d eigend non ension nissio vood t ic rev etwee esis, ional,	n coeffi heory – ersibilit n entro microsti	- unce um m s, ang ion. <i>A</i> icle v cient, Kass y – st ogen a opy a ates a onal,	otoel ertain echa ular Appli vith f reac el, R eady nd h and nd n vibra	 19 ectric ity nics – momentum cations of inite 17 tion ice and -state alogens – 18 probability nacrostates ational and 	

Einstein theory and Debye theory. Quantum statistics – Bose-Einstein (B.E.) and Fermi-Dirac (F.D.) distribution equations – comparison of B.E. and F.D. statistics with Boltzmann statistics – applications of quantum statistics to liquid helium, electrons in metals and Planck's radiation law – concept of negative Kelvin temperature.

UNIT V FAST REACTION TECHNIQUES, PHOTOCHEMISTRY AND RADIATION CHEMISTRY

18

Introduction – flow methods (continuous and stopped flow methods) – relaxation methods (T and P jump methods) – pulse techniques (pulse radiolysis, flash photolysis) – shock tube method – molecular beam method – lifetime method. Photophysical processes of electronically excited molecules – Jablonski diagram. – Stern-Volmer equation and its applications – experimental techniques in photochemistry – chemical actinometers – lasers and their applications. Differences between radiation chemistry and photochemistry – sources of high energy radiation and interaction with matter – radiolysis of water, solvated electrons – definition of G value, Curie, linear energy transfer (LET) and Rad – scavenging techniques – use of dosimetry and dosimeters in radiation chemistry – applications of radiation chemistry.

	LECTURE	TUTORIAL	SELF STUDY	TOTAL
HOURS	60	15	15	90
TEXT BOOKS				

TEXT BOOKS

- 1. F. A. Cotton, Chemical Applications of Group Theory; 3rd Ed., John Wiley and Sons, Singapore, 2003.
- 2. K. Chandra, Introductory Quantum Chemistry; 4th Ed., Tata McGraw Hill, Noida, 1994.
- 3. D. A. Mcquarrie, Quantum Chemistry; University Science Books, Sausalito, 2008.
- 4. K. J. Laidler, Chemical Kinetics; 3rd Ed., Tata McGraw Hill, Noida, 1987.
- 5. J. W. Moore and R. G. Pearson, Kinetics and Mechanism; 3rd Ed., John Wiley and Sons, New York, 1981.
- 6. M. Mortimer and P. G. Taylor, Chemical Kinetics and Mechanism; 1st Ed., Royal Society of Chemistry, UK, 2002.
- 7. J. N. Gurtu and A. Gurtu, Advanced Physical Chemistry; 5th Ed., Pragathi Prakashan, Meerut, 2006.
- 8. J. I. Steinfeld, J. S. Francisco and W. L. Hase, Chemical Kinetics and Dynamics; 2nd Ed., Prentice Hall, New Jersey, 1999.
- 9. P. W. Atkins, Physical Chemistry; 7th Ed., Oxford University Press, Oxford, 2001.
- 10. J. Rajaram and J. C. Kuriacose, Thermodynamics for Students of Chemistry Classical, Statistical and Irreversible; Pearson Education, New Delhi, 2013.
- 11. Horia Metiu, Physical Chemistry, Thermodynamics; Taylor and Francis, Singapore, 2006.
- 12. K. K. Rohatgi-Mukherjee, Fundamentals of Photochemistry; 3rd Ed., New Age International Pvt. Ltd., New Delhi, 2014.

REFERENCE BOOKS

- 1. R. L. Flurry, Jr, Symmetry Groups: Theory and Chemical Applications; Prentice Hall, New Jersy, 1980.
- S. F. A. Kettle, Symmetry and Structure; 2nd Ed., John Wiley and Sons, Chichester, 1995.
 I. N. Levine, Quantum Chemistry; 5th Ed., Prentice Hall, New Jersey, 2000.
- 3. R. K. Prasad, Quantum Chemistry; 4th Ed., New Age International Publishers, New Delhi, 2014
- 4. K. S. Gupta, Chemical Kinetics and Reaction Mechanism; RBSA Publishers, Jaipur, India, 1992.

5. J. W. T. Spinks and R. J. Woods, Introduction to Radiation Chemistry; 3rd Ed., John Wiley and Sons, New York, 1990.

E RESOURCE

- 1. <u>https://www.youtube.com/watch?v=pGerRhxNQJE</u>
- 2. <u>https://www.youtube.com/watch?v=R-x9KdNjQmo</u>
- 3. <u>https://www.youtube.com/watch?v=F_NmS-Wy2lE</u>
- 4. <u>https://www.youtube.com/watch?v=6QXtnmB1vqk</u>
- 5. <u>https://www.youtube.com/watch?v=1zZ6rvh1cgw</u>

COURSE	E CODE	COURSE NAME	L	Т	SS	Р	С
YCY201		INORGANIC CHEMISTRY-I	I 4	1	1	0	5
PREREC	UISITE	NIL	L	Т	SS	Р	Н
	-		4	1	1 1		6
COUF	RSE OUTCOM	IES: On the successful completion	n of the	D	OMAIN		LEVEL
	cours	e, students will be able to	-				
CO1	Recall and Ex	plain the basic concepts of structur	e and	Cogni	itive]	Remember
		ganometallic compounds; Displayt				1	Understand
	-	organometallic molecules using 18	8 electron	Psych	omotor	5	Set
	rule.						
CO2		ad Report reaction mechanism of in	organic	Cogni			Understand
	and organome	tallic compounds.		Affec	tive]	Respond
CO3				Cogni	itive	I	Understand
		hysical and chemical properties of		Affec	tive		Apply
	and <i>Interpret</i> t	he mechanism of their chemical re	actions.]	Respond
CO4	Degerike the g	ringinlag of high angenia showing	ward the	Com	4		A
CO4		rinciples of bioinorganic chemistry various concepts.	y and the	Cogni	omotor		Analyze Perception
CO5		rious metalloenzymes/ metallopor	nhyring	Cogni			Remember
005	••	ical properties.	phymis	Cogin			Kemember
UNIT I		REANDBONDINGINORGANO	METALI	JCS			
01121		tron rule – applications and lim			l concer	ot and	its
		– uses of typical organometa			-		
	organometal	lic hydrides in organic synthesis.					
		pplexes – bridging and terminal r					
		omplexes – metallocene and an	rene com	plexes –	metal	carbei	nes, 15+6
		boxylate anions.					
		n based on captivity and polar					
	-	of lanthanides and actinides – flu		-		ipound	18 -
UNIT II		lics in medicine, agriculture, hortic		1 muusury	•		
		stitution-oxidative addition and		eliminat	ion-11	and	1.2-
	0	lition and elimination reactions-a					
	hydrocyanat			Wilkinso	•	atalyst	-
		ation of olefins- Wacker-Schmid				-	icid
	process- Eas	tman Halcon process- Fischer-Trop	psch proce	ess- hydro	<u>osilylat</u> io	on.	
UNIT III							
		chrockcarbenes-bonding&reactivit	•	•			
		thesisandreactions-alkenemetathes				C-Han	
		agnosticbonds-Ziegler-Nattapolym	erization	ofolefins-	Heck	reacti	on-
	The Pauson	Khand reaction- Ene reaction.					

UNIT IV	GENERAL PRINCIPL	ES OF BIOINORGAN	IC CHEMISTRY		
	Occurrenceandavailabil	ityofinorganicelement	sinbiologicalsystems-	_	
	biomineralization-contr				
	nucleationandcrystalgro				
	calciumcarbonate-amor	phoussilica,ironbiomi	nerals-strontiumand	l barium	
	sulphate.	•			15+6
	Functionandtransportofal	kaliandalkalineearthmet	alions:characterizatio	n	
	ofK ⁺ ,Na ⁺ ,Ca ²⁺ andMg ²⁺ withmacrocycles–ionchar	1		s bioenergetic	
	processesby the alkalinee	arth metal ions – Mg^{2+a}	and Ca ²⁺ .		
UNIT V	METALLOPORPHYR	INS/METALLOENZY	MES		
	Dioxygentransportands	orage-hemoglobinand			10+6
	myoglobin:electronicand	lspatialstructures-hem	eythrinandhemocya	nine-	
	syntheticoxygen carriers	s, model systems-blue	copper protei	ns (Cu)-	
			chromeselectrontra	nsportchain-	
	carbonmonoxidepoisoni	ng-ironenzymes-perox	idase, catalaseandcy	tochromeP-	
	450,copperenzymes-sup	eroxidedismutase,vitar	ninB12and B12	coenzymes,	
	photosynthesis- photosy	stem-I &II,nitrogen fix	kation, cisplatin.		
	LECTURE	TUTORIAL	PRACTICAL	SELF	TOTAL
				STUDY	HOURS
HOURS	60	15	-	15	90
REFEREN	NCES				

- 1. J. E. Huheey, Inorganic Chemistry; 4th Ed., Harper and Row Publishers, Singapore, 2006.
- 2. K. F. Purcell and J. C. Kotz, Inorganic Chemistry; Thomson Learning, Boston, 1980.
- 3. S. J. Lippard and J. M. Berg, Principles of Bioinorganic Chemistry; Panima Publishing Company, New Delhi, 1997.
- 4. W. Kaim and B. Schewederski, Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life; 2nd Ed., John Wiley and Sons, New York, USA, 2013.
- 5. G. L. Eichhorn, Inorganic Biochemistry; Volumes 1 and 2, 2nd Ed., Elsevier Scientific Publishing Company, New York, 1975.
- 6. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry; 6th Ed., John Wiley and Sons, New York, 1999.
- 7. R. C. Mehrotra and A. Singh, Organometallic Chemistry; 2nd Ed., New Age International Ltd. New Delhi, 2014.
- 8. R. H. Crabtree, The Organometallic Chemistry of the Transition Metals; 3rd Ed., John Wiley and Sons, New York, 2001.
- 9. S. E. Kegley and A. R. Pinhas, Problems and Solutions in Organometallic Chemistry; 2nd Ed., University Science Books, Oxford University Press, 1986.
- 10. A. J. Pearson, Advances in Metal-Organic Chemistry, Vol. 1; Jai Press, Inc., Greenwich, 1989.
- 11. A. W. Parkins and R. C. Poller, An Introduction to Organometallic Chemistry; 1987, Oxford University Press, Chennai.
- 12. I. Haiduc and J. J. Zuckerman, Basic Organometallic Chemistry; Walter De Gruyter Inc, USA, 1985.
- 13. P. Powell, Principles of Organometallic Chemistry; 2nd Ed., Chapman and Hall, London, 1988.
- 14. B. Douglas, D. H. McDaniel and J. J. Alexander, Concepts and Models of Inorganic Chemistry; 3rd Ed., John Wiley and sons, New York, 1994.
- 15. M. Bochmann, Organometallics 1: Complexes with transition metal-carbon bonds; Oxford Chemistry Primers Series, No. 12, and M. Bochmann, Organometallics 2: Complexes with transition metal-carbon bonds; No. 13, 1994.
- **16.** J. P. Collman, L. S. Hegedus, J. R. Norton and R. G. Finke, Principles and Applications of Organotransition Metal Chemistry, University Science Books, California, 1987

COURSE	CODE	Ŋ	CY	202							L	Т		SS	P		С
COURSE		I	PHY	SIC	AL (CHE	MIS	TRY	-II		4	1		1	0		5
PREREQ	UISITE	ľ	NIL								L	Т		SS	Р		Η
											4	1		1	0		6
COURSE	OUTCOM	ΙE	S: 0	n th	e su	ccess	sful c	omp	letior	of the	D	OMA	AIN		LEVEL		
course, stu	dents will b	be	able	to													
CO1	Explain	th	e pi	rinci	ple	of	electr	roche	emisti	y and	Cogn	itive			Un	nders	tanding
	basics of conductivity of electrolytes and related concepts. Describe the physical aspects of molecular Cognitive																
CO2	<i>Describe</i> spectrosco radiation v	op	y an	nd in	ntera	ctior	n of	elec	etrom	agnetic	Cogni	itive			Re	emen	nber
CO3	<i>Interpret</i>									ceules.	Cogn	itive			Ar	oply	
	thermodyn										Affec				-	ceivi	ing
CO4	Describe	ť	he j	princ	ciple	of	kin	etics							Re	emen	nber
	photochen irreversibl					e cat	alysis	s, rev	versił	ole and	Affec	tive			Re	spon	ding
CO5	Apply an	nd	Ide	entif	y th	ne v	variou	us c	conce	pts of	Cogn	itive			Ap	oply	
	adsorption						action	at in	nterpł	lase.					Re	emen	nber
UNIT I	ELECTR										1 1.00						
	Ion transp																
	laws of d conductiv											-					
	equivalent	•			•			•			U 1						
	equation -				•		•		-								
	of non aq				•	-					-			-			
	electrode-	-											•		12	+6	
	phenomen	na-	Lipp	oman	n e	quat	ion	- th	e H	elmholt	z- Perr	in -	Gu	oy-	14	+0	
	Chapman											eiius	meth	od			
	of separat								embra	ine pote	ntial.						
UNIT II	MOLECU								tera	:+:	ohat 'l'	Haa 1	han	e t	1		
	Einstein c selection																
	spectra tr			-				-					•				
	spectra of							0			-						
	coarse str																
	diagram -																
	spectra. Ir			-				-	-						1		
	and anhar										-						
	molecules				-		-	-									
	and norm														12	+6	
	polyatomi														1		
	Raman sp Raman sp	-						-				s -v10	ratio	IIdl			
	Raman sp	Jec	ua -I	otal	onal	i me	suu	cure	-1.611	in resol	iance.				<u> </u>		

REFERE	NCES			
HOURS	60	30	-	90
	LECTURE	TUTORIAL	PRACTICAL	TOTAL HOURS
	mechanism -Rideal-Eley r	nechanism.		momit
	Hinshelwood mechanism			
	surface in catalysis: semi kinetics of surface reac	•		
	-solubilisation -micro e			
	including electro kinetic	phenomenon -Micelles	s and reverse micelles	12+6
	measuring surface ten			
	theorem -solid-liquid interfaces -soluble and ir			
	adsorption -determination	_	_	
	diagram -Lennard-Jones			
UNIT V	SURFACE PHENOMEN Adsorption and free ene		ase -potential energy	
	LFER -Hammett and Taft			
	Acid-base catalysis -Har	mmett's acidity function		
	of pressure on rates in so	-		
	reactions. Factors influen ARRT to solution kinetics		12+6	
	between hydrogen and			
	approximation. Chain re-	actions-thermal and ph	otochemical reactions	
	processes -Principle o	-	-	
	significance of reaction c isotopic effect -molecular			
	Theories of reaction rate		•	
UNIT IV	CHEMICAL KINETICS			
	ientof electrolytes.			
	nition, standardstatesandexperime	entaldeterminationsofact	ivitvandactivitycoeffic	
	calculationoffugacityofrea	llgas,activityandactivityc	coefficient,concept,defi	
	thermodynamicproperties		-	
	molar		propertiesnotincluded)-	12+6
	Duhemequationanditsappl	ications(theexperimental	Ideterminationofpartial	1.
	molarproperties, chemical pities, Gibbs	potential, relationshipbety	weenpartialmolarquant	
	thermodynamicsofsystems			
	rent		ceptionstothethirdlaw-	
	formsofstatingthethirdlaw			
	I hirdlaw thermodynamics	s,needforit,Nernstheatthe	oremandother	

- 3. I. N. Levine, Quantum Chemistry, 4th ed., Prentice Hall of India Pvt Ltd., (1994),
- 4. D. A. McQuarrie, Quantum Chemistry, University Science Books (1998),
- 5. S. Glasstone, Introduction to Theoretical Chemistry, Affiliated East-West Press
- 6. G. N. Barrow, Introduction to Molecular Spectroscopy, International Mc.Graw Hill Edition (1993),
- 7. G. N. Barrow, Introduction to Molecular Spectroscopy, International McGraw Hill Student Edition (1984),
- 8. B. P. Straughan and S. Walker, Spectroscopy, Vol.I to III, Chapman Hall, London (1976),
- 9. S. Glasstone, Thermodynamics for Chemists, East-west Affiliated Pvt Ltd, New Delhi (1969),
- 10. R. P. Rastogi and R. R. Misra, An Introduction to Chemical Thermodynamics Vikas Publishing House Pvt Ltd., (1992),
- Kloz and P. M. Rosenberg, Chemiscal Thermodynamics: Basics Theory and Methods, 3rd ed., W. A. Benjamin, NY (1974),
- 12. K. J. Laidler, Chemical Kinetics, 2nd ed, Tata McGraw Hill (1975),
- 13. A. A. Frost and R. G. Pearson, Kinetics and Mechanisms, John Wiley & Sons (1953),
- 14. J. C. Kuriacose and J. Rajaram, Kinetics and Mechanisms Transformations, Macmillan & Co., (1993).
- 15. P. W. Atkins, Advanced Physical Chemistry, 7th ed., Clarendon (2002)

COUI	RSE CODE	YC	CY301							L	Т	Р	C
-	RSE NAME			CHEM	IISTR	RY II				4	1	0	5
										L	Т	Р	Н
C: P:	A	4.5	5:0:0.5							4	1	0	5
COU	RSE OUTCO	OMES	5:						Ι	Domai	in	Le	evel
CO1	Recall and su			-				n	C	ogniti	Ve		ember
	reactions of a									oginti	ve	Unde	erstand
CO2	Outline the r							1		• . •		Rem	ember
	substitution r orientation of			-		ructur	e and	1	C	ogniti	ve	Unde	erstand
CO3	<i>Identify</i> the re			-		ement	t read	rtion					
	and <i>illustrate</i>							20011	C	ogniti	ve		oply
	elimination r									08		Unde	erstand
CO4	Recognize ar	and In	tornrot t	ha proper	rotion	and	nron	ortion	C	ogniti	VO		
	of various he		-				prope	erties		0		Unders	
<u> </u>	, v		•	•									eceive
CO5	Understand				ctural	com	pone	nts		ogniti			alyze
TINIT	of various of I - NUCLEO				TION	NDF	ACT	IONS		Affecti	lve		ceive 15
	tic nucleophi									SN			
stereou rearran Aroma orienta nucleo UNIT Aroma transit oxide of Han mecha Equati Alipha coupli diazor	and vinylic c chemical factor agements investigation – Ullma ophilic substitut II - ELECTR atic electrophili ion state theor quantitative tree mmett equation nisms Hamme on. atic electrophiling reactions – <u>ium salts.</u> III - ADDIT	tors nvolvi hilic ann, f aution ROPI ilic su ory wi reatme on – j nett pa ilic su – me	 correling car substitut Sandmey Steven HILIC S Ibstitution ith suitable ent of the principle arameter Ibstitution etals as e 	ation of bocations ions – ver and $\frac{s}{s}$ – Somm UBSTIT n reaction ble reaction s f Han s – σ and n – SE2, S lectrophi	f stru s – SN1, Chich melet- FUTIO n – or lons – ral effi mmetti nd ρ , SEi a ile in	ucture Wa hibab - Hau ON F rienta - subs fects c t corr mod and SH subs	Ar, in re- iser a REA tion, stitution re- relation lified E1 m	th rea r-Meen Benzy eaction nd vor CTIO reactivity on – e form echani	activ rwei n-Rie n-Rie NS vity n thie y. Su offec s of isms actic	ity - n and mech rearra chter r and m ophen ubstitu st of s Ham a - dia	sol anisi ngen rearr necha e an ient c truct imett	vent ef dienone m – re nents in angemen anisms b d pyridi effects – ure on equation um	eactivity volving nts. 15 oased or ne – N- origins reaction on, Taf
	on to carbon-									eonhil	ic a	nd free	
addition bromin to form carbor	ons – orientati ne and hydroge nation of alco nyl systems – nylcuprate) – a	tion o gen br cohols – me	of the add romide, h - oxida echanism	dition – iydroxyla tion and	stered ation, l ozor	ochen , 1,2- nolysi	nical dihy is. A	factor droxyl dditior	rs ir latio n to	nfluen n – hy carbo	cing ydrol onyl	the add ooration and cor	lition o leading njugateo

carbon-oxygen double bond – Benzoin, Knoevenagel, Stobbe, Darzens glycidic ester condensation and Reformatsky reactions.

Elimination reactions – mechanisms; E1, E2, E1cB – stereochemistry of elimination, Hofmann's and Zaitsev's rules – competition between elimination and substitution – pyrolytic *cis*-elimination, Chugaev reaction – examples such as Hofmann degradation, Cope elimination – Bredt's rule with examples.

UNIT IV - HETEROCYCLES

15

Nomenclature: Trivial, systematic and replacement nomenclature – nonaromatic heterocycles – synthesis of tetrahydrofurans – pyrrolidines – tetrahydropyrans – piperidines. Synthesis and reactivity of heterocycles: aziridines – oxiranes – thiiranes – azetidines – oxetanes – oxazoles – imidazoles – thiazoles – isooxazoles. Synthesis and reactivity of aromatic heterocycles: pyrazoles – isothiazoles – triazoles – pyrimidines – purines – triazines – pyridazines – pyrazines.

UNIT V - NATURAL PRODUCTS

15

Terpenoids: introduction – biosynthesis of menthol, camphor – total synthesis: Takasago synthesis of menthol, Corey's synthesis of longifolene, Curran's synthesis of hirsutene.

Steroids: introduction – partial synthesis of androsterone and testosterone (from Cholesterol) – total synthesis: Johnson's synthesis of progesterone and Vollhardt's synthesis of estrone. Alkaloids: introduction – biosynthesis of nicotine, camptothecin – total synthesis: Corey's synthesis of epibatidine, Comin's asymmetric synthesis of Camptothecin and Woodward's synthesis of reserpine.

LECTURE	TUTORIALS	SELF STUDY	PRACTICAL	TOTAL
60	15	-	-	75
	<u>a</u>			

TEXT BOOKS

- 1. S. H. Pine and J. B. Hendrickson, D. J. Cram and G. S. Hammond, Organic Chemistry; 5th Ed., McGraw Hill, Noida, (1987).
- 2. T. H. E. Lowry and K. S. Richardson, Mechanism and Theory in Organic Chemistry; 3rd Ed.,

Benjamin-Cummings Publishing, USA, (1997).

- 3. J. March and M. B. Smith, Advanced Organic Chemistry: Reactions, Mechanisms and Structure, 6th Ed., Wiley, New York, (2007).
- 4. J. Clayden, N. Greeves, S. Warren, and P. Wothers, Organic Chemistry, 2nd Ed., Oxford University Press, UK, (2012).

5. I. L. Finar, Organic Chemistry; Vol.II, 7th Ed., Pearson Education Ltd., New Jersey, (2009).

REFERENCES

1. R. K. Bansal, Reaction Mechanism in Organic Chemistry; Tata McGraw Hill, Noida, (1990)

2. F. A. Carey, and R. J. Sundberg, Advanced Organic Chemistry, Parts A and B, 5th Ed., Springer, Germany, (2007).

3. E. J. Corey, and X-M. Cheng, The Logic of Chemical Synthesis; 1st Ed., Wiley-Interscience,

New York, (1995).

4. T. L. Gilchrist, Heterocyclic Chemistry; 3rd Ed., Prentice Hall, New Jersey, 1997.

5. R. K. Bansal, Heterocyclic Chemistry; 3rd Ed., Wiley Eastern Ltd, New Delhi, 1999.

- 6. K. C. Nicolaou and E. J. Sorensen, Classics in Total Synthesis, Targets, Strategies, Methods; Wiley VCH, Germany, 1996.
- 7. Longifolene: F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry; Vol.2. 5th Ed., Springer, Berlin, 2008.
- 8. Androsterone and Testosterone: J. Chem. Soc. Perkin Trans. I; 1986, 117.
- 9. Epibatidine: J. Org. Chem; 1993, 58, 5600.
- 10. Estrone, Estradiol and 2-Methoxyestradiol: J. Org. Chem; 2009, 74, 6362.

COU	RSE CODE	COURSE NAME		L	Т	Р	С		
YCY3	305	ANALYTICAL CHEMISTR	Y	4	1	0	5		
PREF	REQUISITES	NIL		L	Т	Р	Н		
C:P:A		4.4:0:0.6		4	1	0	5		
COU	RSE OUTCOME	CS	Domain	Lev	el	1 1			
CO1	<i>Describe</i> the bas methods	sic principle of instrumental	Cognitive		Remember, Understand				
CO2	<i>Classify</i> the var show their signit		erstar	,					
CO3	<i>Inspect</i> the apple chromatography	Ana Rece	•						
CO4	<i>Illustrate</i> the print thermoanalytical	Und Ana	erstaı lyze	nd,					
CO5	<i>Examine</i> the contechniques.	Ana	Analyze, Respond						
Variou binom popula estima Hypot means Curve residu fit – r UNIT	us types of error tial distribution, ation and sample, ators, repeatability thesis testing, leve s t-Test, paired t-T fitting, fitting of als – general poly and its abuse – m III: CHROMA	ERROR ANALYSIS – accuracy, precision, significant the Poisson distribution and nor mean, variance, standard deviation and reproducibility of measurement els of confidence and significance est – analysis of variance (ANOV) inear equations, simple linear canonial equation fitting, linearizing ultiple linear regression analysis, e TOGRAPHY – principles of ion exchange niques – columns, adsorbents,	rmal distribution on, way of quoti- ents. b, test for an out A) – correlation a ases, weighted li- g transformations lementary aspect b, paper, thin	on – de ng unce lier, test and regro inear cas s, expone ts. -layer	scribi rtaint ing v essior ee, an ential and	ng (y, ro ariar 1. alysi func col	data bus ices is of ction		
		ses – HPTLC, HPLC technique preparative column – GC-MS te							

UNIT IV: THERMOANALYTICAL METHODS AND FLUORESCENCE SPECTROSCOPY

Principles – instrumentations and applications of thermogravimetry analysis (TGA), Differential Thermal Analysis (DTA) and Differential Scanning - Calorimetry (DSC) –thermometric titrations – types – advantages.

Basic aspects of synchronous fluorescence spectroscopy – spectral hole burning – flow cytometry – fluorometers (quantization) – instrumentation – applications.

UNIT V: ELECTROANALYTICAL TECHNIQUES

Electrochemical sensors, ion-sensitive electrodes, glass – membrane electrodes, solid-liquid membrane electrodes – ion-selective field effect transistors (ISFETs) – sensors for the analysis of gases in solution.

Po larography – principles and instrumentation – dropping mercury electrode – advantages – Ilkovic equation – applications of polarography – polarographic maxima – oscillographic polarography, AC polarography – cyclic voltammetry – advantages over polarographic techniques – chronopotentiometry – advantages – controlled potential coulometry – amperometric titrations: principles – techniques – applications – estimation of lead.

			АT
			AL
60 15	-	-	75

TEXT BOOKS

1. D. B. Hibbert and J. J. Gooding, Data Analysis for Chemistry; Oxford UniversityPress, UK, 2006.

2. J. Topping, Errors of Observation and Their Treatment; 4th Ed., Chapman Hall, London, (1984).

3. A. Braithwaite and J. F. Smith, Chromatographic Methods; 5th Ed., Springer, Germany; (1995).

4. V. K. Srivastava and K. K. Srivastava, Introduction to Chromatography; 2nd Ed., Holden Day,

New York, (1985).

5. H. H. Willard, L. L. Merritt, J. A. Dean and F. A. Settle, Instrumental Methods of Analysis; 6th

Ed., CBS Publishers and Distributors, Chennai, (1986).

- 6. D. A. Skoog, D. M. West and D. J. Holler, Fundamentals of Analytical Chemistry, 7th Ed., Harcourt College Publishers, Singapore, (2004).
- 7. A. Sharma, S. G. Schulman, Introduction to Fluorescence Spectroscopy; Wiley- Interscience, New York, (1999).

15

15

REFERENCES

1. C. N. Banwell and E. M. McCash, Fundamentals of Molecular Spectroscopy; 4th Ed., Tata McGraw-Hill, New Delhi, (1994).

2. A. I. Vogel, Text Book of Quantitative Inorganic Analysis; 6th Ed., Longman, New Delhi, (2000).

3. D. C. Harris, Quantitative Chemical Analysis; 4th Ed., W. H. Freeman Publications, New York,

(1995).

4. S. C. Gupta, Fundamentals of Statistics; 6th Ed., Himalaya Publications, Delhi, (2006).

YEC304 PRERE C:P:A	IA							С	
		PHARMACE	UTICAL CHEMIS	STRY	4	1	0	5	
	QUISITES	Nil			L	Т	Р	Н	
С.Г.А		4:0:1			4	1	0	5	
	E OUTCOM			DOM	AIN	LE	VEL		
CO1			y of pharmaceutical				nem		
	chemistry.	C		U		Uno	lerst	and	
CO2		structural aspect	s of antibiotics and	l Cogni	tive	Uno	lerst	and	
	<i>relate</i> their fu			U					
CO3	<i>Illustrate</i> the	biologicalactivit	ties of analgesic and	Cogni	tive	Rer	nem	ber	
	antipyretics.					Unc	derst	and	
				Affect	ive	Rec	eive		
CO4	<i>Summarize</i> t	he activities of a	naesthetics and local	Cogni	tive	Uno	lerst	and	
	anaesthetics.	naesthetics. Affective Respond							
CO5	<i>Inference</i> the	e various concept	ts of clinical	Cognitive Analyze					
	chemistry.			Affective Respond					
UNIT I BASICS OF PHARMACEUTICALCHEMISTRY 15									
Definitio	ons – the terms	s – drugs, pharm	acology, pharmacy,	chemothe	erapy,	ther	apeu	tics –	
pharmac	ologically act	ive principles in	plants - first aid -	importar	nt rule	es of	first	aids,	
cuts, fra	ctures, bleedi	ng for blood, n	naintaining breathin	g burns	and f	irst a	aid ł	oox –	
tubercul	osis (t.b.), jau	undice, piles, ty	phoid, malaria, cho	olera – c	auses	- s	ymp	toms,	
diagnosi	s – preventio	n and treatment	- medicinally imp	ortant co	mpot	inds	of i	ron –	
ferrous g	gluconate, ferr	ous sulphate and	ferric ammonium ci	trate.					
UNIT I	I ANTIBI	OTICS					15		
			fication and biolo	0			-		
			tracycline – structur						
uses – c	hemical struc	ture and pharma	cological activity -	effect of	unsa	turat	ion,	chain	
length, i			oups, hydroxyl group	s and aci	d grou	ups.			
UNIT I		ESIC AND ANT					15		
			of morphine – deriv						
			s – pethidine, metha						
			ı – analgin – prepa	ration, pr	opert	ies a	nd u	ises –	
ibuprofe		fen – structure ar							
UNIT I			LOCAL ANAEST				15		
			ification of anaesthe						
			m and halothane – a						
			s anaesthetics) – me			-	-		
			thocaine – structure	e and use	s – b	enzo	cain	e and	
•		ynthesis and uses							
UNIT V		AL CHEMISTE					15		
			serum – <i>o</i> -toluidii						
-			detection of diabet						
		of anaemia – es	timation of haemog	globin (H	lb co	ncen	trati	on) –	
red cell			1						
LEC	TURE	TUTORIAL	SELF STUDY	PRACT	ICAL	· _ '	гот	'AL	
(60	15	-	-			7	5	
	BOOKS		· .						

1. Jayashree Ghosh, A Text Book of Pharmaceutical Chemistry; 5th Ed., S.Chand and Company Ltd., New Delhi, (2014).

REFERENCES

1. S. Lakshmi; Pharmaceutical Chemistry; 1st Ed., S. Chand and Company Ltd., New Delhi, (1995).

2. Bhagavathi Sundari; Applied Chemistry; 1st Ed., MJP Publishers, Chennai, (2006).

YEC403	E CODE	COURSE NAME		L	Т	С	
	BB	INDUSTRIAL CHEMISTRY		4	1	5	
				L	Т	H	
C:P:A		3.75:0.75:0.5		4	1	5	
	E OUTCOMES se, students will	S: On the successful completion of be able to	DON	IAIN		EVEL	
CO1		basic ideas of an industry and	Cognit Psycho		Reme Unde Set	ember rstand	
CO2	-	<i>Report</i> the preparation and properties nd petrochemicals.	Cognit Affecti	ive		rstand ond	
CO3Identify the role and functions of portland cement.CognitiveUnders ApplyAffectiveResponse							
CO4List the various process involved in the paperCognitiveAnalyzeindustryPsychomotorPercept							
CO5 <i>Outline</i> the preparation and mode of action of Cogniti soaps, detergents and perfumes. Psychol					Analy	Analyze Perception	
SYLLA	· · ·		•			-	
UNIT I	Basic Idea	s and Industrial Wastes					
continuo Types of	us processing – f industrial wast t of wastes or ef	operation – flow chart – chemical co chemical process selection – design – es – treatment of wastes or effluent fluent with increasing impurities – tree	chemica with org	l proces anic im	ss contro purities	^{l.} 15	
chemical	wastes.	fluent with inorganic impurities – trea				IL	
		and Petrochemicals					
chemical UNIT II Introduct – unsatu hydrocar	tion – saturated l rated hydrocart bons – toluene a		ne, buty rit from l	lene – beat – n	aromati nethylate	15 10 15	
chemical UNIT II Introduct – unsatu hydrocar	tion – saturated l urated hydrocart bons – toluene a preparation of abs	and Petrochemicals hydrocarbons from natural gas – uses of bons – acetylene, ethylene, propyler nd xylene. Preparation of rectified spin	ne, buty rit from l	lene – beat – n	aromati nethylate	15	
chemical UNIT II Introduct – unsatu hydrocar spirit – p UNIT II Introduc cement, Setting	Petroleumtion – saturated l urated hydrocard bons – toluene a oreparation of absIManufactu ction – types of acid resisting of	and Petrochemicals hydrocarbons from natural gas – uses of bons – acetylene, ethylene, propyler nd xylene. Preparation of rectified spin solute alcohol from rectified spirit – petropyler ure of Cement cement – high alumina cement, we be the solute of cement – high alumina cement, we cement, white cement, coloured cement operties of cement – testing of cem	ne, buty rit from l etrochem vater pro-	lene – peat – n icals in pof cen zzolana	aromati nethylate India. nent, sla a cemen	g t. 15	
chemical UNIT II Introduct – unsatu hydrocar spirit – p UNIT II Introduc cement, Setting	Petroleum tion – saturated l urated hydrocarl ibons – toluene a oreparation of abs I Manufactur ction – types of acid resisting of of cement – pr e – cement indust	and Petrochemicals hydrocarbons from natural gas – uses of bons – acetylene, ethylene, propyler nd xylene. Preparation of rectified spin solute alcohol from rectified spirit – petropyler ure of Cement cement – high alumina cement, we be the solute of cement – high alumina cement, we cement, white cement, coloured cement operties of cement – testing of cem	ne, buty rit from l etrochem vater pro-	lene – peat – n icals in pof cen zzolana	aromati nethylate India. nent, sla a cemen	g t. 15	

UNIT V	Soaps, Detergents and Perfumes					
Introduction – types of soaps – hard and soft soaps – manufacture of soap (hot and continuous process only) – cleansing action of soap – detergents – surface active agents – biodegradability of surfactants, amphoteric detergents. Introduction – production of natural perfumes – flower perfumes – jasmine, rose and lily – production of synthetic perfumes – muscone and nitro-musks.						
REFERENC						
2. R. N. Shr Toronto,	rma, Industrial Chemistry; 8th Ed., Goel Publishing House, New Delhi, 1997 eve, and J. A. Brink Jr. Chemical Process Industries; 4th Ed., McGraw Hill, 1977. Brain, Production and Properties of Industrial Chemicals; Reinhold, New Yor					

	LECTURE	TUTORIAL	SELF- STUDY	TOTAL HOURS
Hours	60	15	-	75

COURSE CODE		COURSE NAME	L	Т	С		
YEC404B		CHEMISTRY OF NANOSCIENCE AND NANOTECHNOLOGY			1	5	
				L	Т	H	
C:P:A		4.4:0:0.6	4.4:0:0.6		1 5	5	
		IES: On the successful completion of will be able to	DOMAIN		LEV	/EL	
CO1		e synthetic methods of nanomaterials.	Cognitive	Remember Understand			
<u> </u>	Psychomotor					Set	
CO2	-	<i>compare</i> the properties and characterization of Cognitive Affective				Understand Respond	
CO3	<i>Predict</i> the reactions of nanoparticles Cognitive					Understand Apply	
	Affective						
CO4	Classify to nanostruct	heapplications of carbon clusters and ures.	Cognitive Psychomotor	Analyze Perception			
CO5	List the ro	Cognitive	Analyze				
	nanodevice	2.	Psychomotor	Perception			
SYLLAI UNIT I Definitio	Synth	etic Methods nensional materials – historical milestone	s – unique prop	erties	s due	to	
nanosize, nanomate sol-gel condensa polymer- nanomate –hydrody TiO ₂ /ZnO	quantum d erials – hydr and precipi tion process mediated s erials using r namic cav D/CdO/CdS,	ots, classification of nanomaterials.Gener- othermal synthesis, solvothermal synthesis tation technologies – combustion fl – gas-phase condensation synthesis – ynthesis–protein microtubule-mediated nicroorganisms and other biological agen itation. Inorganic nanomaterials – tr organic nanomaterials – examples – rotax	ral methods of is – microwave ame – chemi reverse micelle synthesis – s ts – sonochemic ypical example	synth irrad cal synt ynthe cal sy es –	nesis liation vapo hesis esis vnthes	of n– ur – of sis	
UNIT II	Chara	ncterisation of Nanoscale Materials					
Microsco (STEM) Microsco	opy(TEM) H – Scanning opy (SNOM	e Force Microscopy (AFM) – Transmiss Resolution and Scanning Transmission Tunneling Microscopy (STM) – Scann).Scanning ion conductance microscope g probe microscopes and surface plasm	Electron Micro ing Nearfield C e, scanning the)ptic rmal	al	15	
UNIT II	_			-			
UNIT	i iteace	ions in Nanoparticles					

UNIT IV	Carbon	Clusters and Nan	ostructures			
C60–alkali Carbon nar characteriza –doping – –synthetic s	loped C60- otubes – tion – med functionali trategies –	- new carbon struct -superconductivity is synthesis – single chanism of formati zing nanotubes – gas phase and soluti	in C60–larger and s e walled carbon n ion – chemically applications of car ion phase growth –	maller fullerenes nanotubes – str modified carbon bon nanotubes.	ucture and nanotubes Nanowires	5
UNIT V	Nanotechn	ology and Nanodev	vices			
designed by DNA comp	Seeman. F lexes–mole , molecula	ll – DNA – knots force measurements ecular recognition r diodes, self-asse	in simple protein 1 and DNA based	nolecules and po sensor. Protein	olymerase – nanoarray,	5
REFEREN	CE BOOK	S:				
 and 2; W 2. C. P. Po Jersey, 2 3. K. J. Kla York, 20 4. T. Prade Ed., Tata 	Viley-VCH; ole, Jr: and 2003. abunde (Ed) 009. ep, Nano: 7 a McGraw 1	uller and A. K. Che Germany, Weinhein F. J. Owens, Introd , Nanoscale Materia Che Essentials in Un Hill, New York, 200	m, 2004. uction to Nanotechi als in Chemistry; 21 iderstanding Nanose 07.	nology; Wiley Int nd Ed., Wiley-Int cience and Nanot	terscience, New erscience, New echnology; 1st	V 7
 Bengt N H. Gleit 	olting, Met	romachines as Tool hods in Modern Bic actured Materials: E 2000	physics; 3rd Ed., S	pringer-Verlarg,	Berlin, 2009.	3.
8. W. Kain	and B. Sch	wederski, Bioinorg hn-Wiley R Sons, N	-	organic Elements	in the Chemist	ry
or Life,	2110 E.u., JU	LECTURE	TUTORIAL	SELF-	TOTAL	
				STUDY	HOURS	
Hou		60	15		75	